ADS_UNet: A Nested UNet for Histopathology Image Segmentation
- URL: http://arxiv.org/abs/2304.04567v1
- Date: Mon, 10 Apr 2023 13:08:48 GMT
- Title: ADS_UNet: A Nested UNet for Histopathology Image Segmentation
- Authors: Yilong Yang, Srinandan Dasmahapatra, Sasan Mahmoodi
- Abstract summary: We propose ADS UNet, a stage-wise additive training algorithm that incorporates resource-efficient deep supervision in shallower layers.
We demonstrate that ADS_UNet outperforms state-of-the-art Transformer-based models by 1.08 and 0.6 points on CRAG and BCSS datasets.
- Score: 1.213915839836187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The UNet model consists of fully convolutional network (FCN) layers arranged
as contracting encoder and upsampling decoder maps. Nested arrangements of
these encoder and decoder maps give rise to extensions of the UNet model, such
as UNete and UNet++. Other refinements include constraining the outputs of the
convolutional layers to discriminate between segment labels when trained end to
end, a property called deep supervision. This reduces feature diversity in
these nested UNet models despite their large parameter space. Furthermore, for
texture segmentation, pixel correlations at multiple scales contribute to the
classification task; hence, explicit deep supervision of shallower layers is
likely to enhance performance. In this paper, we propose ADS UNet, a stage-wise
additive training algorithm that incorporates resource-efficient deep
supervision in shallower layers and takes performance-weighted combinations of
the sub-UNets to create the segmentation model. We provide empirical evidence
on three histopathology datasets to support the claim that the proposed ADS
UNet reduces correlations between constituent features and improves performance
while being more resource efficient. We demonstrate that ADS_UNet outperforms
state-of-the-art Transformer-based models by 1.08 and 0.6 points on CRAG and
BCSS datasets, and yet requires only 37% of GPU consumption and 34% of training
time as that required by Transformers.
Related papers
- S3TU-Net: Structured Convolution and Superpixel Transformer for Lung Nodule Segmentation [5.2752693301728355]
We propose a segmentation model, S3TU-Net, which integrates multi-dimensional spatial connectors and a superpixel-based visual transformer.
S3TU-Net is built on a multi-view CNN-Transformer hybrid architecture, incorporating superpixel algorithms, structured weighting, and spatial shifting techniques.
Experimental results on the LIDC-IDRI dataset demonstrate that S3TU-Net achieves a DSC, precision, and IoU of 89.04%, 90.73%, and 90.70%, respectively.
arXiv Detail & Related papers (2024-11-19T15:00:18Z) - Layer-wise Model Merging for Unsupervised Domain Adaptation in Segmentation Tasks [3.776249047528669]
We leverage the abundance of freely trained models to introduce a cost-free approach to model merging.
It aims to maintain the distinctiveness of the task-specific final layers while unifying the initial layers.
This approach ensures parameter consistency across all layers, essential for boosting performance.
arXiv Detail & Related papers (2024-09-24T07:19:30Z) - DiTMoS: Delving into Diverse Tiny-Model Selection on Microcontrollers [34.282971510732736]
We introduce DiTMoS, a novel DNN training and inference framework with a selector-classifiers architecture.
A composition of weak models can exhibit high diversity and the union of them can significantly boost the accuracy upper bound.
We deploy DiTMoS on the Neucleo STM32F767ZI board and evaluate it based on three time-series datasets for human activity recognition, keywords spotting, and emotion recognition.
arXiv Detail & Related papers (2024-03-14T02:11:38Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Unsupervised Learning Consensus Model for Dynamic Texture Videos
Segmentation [12.462608802359936]
We present an effective unsupervised learning consensus model for the segmentation of dynamic texture (ULCM)
In the proposed model, the set of values of the requantized local binary patterns (LBP) histogram around the pixel to be classified are used as features.
Experiments conducted on the challenging SynthDB dataset show that ULCM is significantly faster, easier to code, simple and has limited parameters.
arXiv Detail & Related papers (2020-06-29T16:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.