First-order methods for Stochastic Variational Inequality problems with Function Constraints
- URL: http://arxiv.org/abs/2304.04778v3
- Date: Fri, 24 May 2024 17:31:22 GMT
- Title: First-order methods for Stochastic Variational Inequality problems with Function Constraints
- Authors: Digvijay Boob, Qi Deng, Mohammad Khalafi,
- Abstract summary: This paper presents novel first-order methods for the function-constrained Variational Inequality (FCVI) problem in smooth or nonsmooth settings.
All our algorithms easily extend to saddle point problems with function constraints that couple the primal and dual variables while maintaining the same complexity results.
- Score: 3.922842284927803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The monotone Variational Inequality (VI) is a general model with important applications in various engineering and scientific domains. In numerous instances, the VI problems are accompanied by function constraints that can be data-driven, making the usual projection operator challenging to compute. This paper presents novel first-order methods for the function-constrained Variational Inequality (FCVI) problem in smooth or nonsmooth settings with possibly stochastic operators and constraints. We introduce the AdOpEx method, which employs an operator extrapolation on the KKT operator of the FCVI in a smooth deterministic setting. Since this operator is not uniformly Lipschitz continuous in the Lagrange multipliers, we employ an adaptive two-timescale algorithm leading to bounded multipliers and achieving the optimal $O(1/T)$ convergence rate. For the nonsmooth and stochastic VIs, we introduce design changes to the AdOpEx method and propose a novel P-OpEx method that takes partial extrapolation. It converges at the rate of $O(1/\sqrt{T})$ when both the operator and constraints are stochastic or nonsmooth. This method has suboptimal dependence on the noise and Lipschitz constants of function constraints. We propose a constraint extrapolation approach leading to the OpConEx method that improves this dependence by an order of magnitude. All our algorithms easily extend to saddle point problems with function constraints that couple the primal and dual variables while maintaining the same complexity results. To the best of our knowledge, all our complexity results are new in the literature
Related papers
- A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization [17.25924791071807]
We present a novel type of subgradient algorithm for complex constraints.
We show that our method is significantly faster than two-of-the-art algorithms.
arXiv Detail & Related papers (2025-01-31T15:18:52Z) - Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - Nonsmooth Projection-Free Optimization with Functional Constraints [12.20060970177791]
This paper presents a subgradient-based algorithm for constrained nonsmooth convex computation.
Our proposed algorithm can handle nonsmooth problems with general convex functional inequality constraints.
Similar performance is observed when deterministic subgradients are replaced with subgradients.
arXiv Detail & Related papers (2023-11-18T23:06:33Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local dual vectors.
Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient.
We propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs.
arXiv Detail & Related papers (2023-08-17T21:15:04Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Extra-Newton: A First Approach to Noise-Adaptive Accelerated
Second-Order Methods [57.050204432302195]
This work proposes a universal and adaptive second-order method for minimizing second-order smooth, convex functions.
Our algorithm achieves $O(sigma / sqrtT)$ convergence when the oracle feedback is with variance $sigma2$, and improves its convergence to $O( 1 / T3)$ with deterministic oracles.
arXiv Detail & Related papers (2022-11-03T14:12:51Z) - A Primal-Dual Approach to Solving Variational Inequalities with General Constraints [54.62996442406718]
Yang et al. (2023) recently showed how to use first-order gradient methods to solve general variational inequalities.
We prove the convergence of this method and show that the gap function of the last iterate of the method decreases at a rate of $O(frac1sqrtK)$ when the operator is $L$-Lipschitz and monotone.
arXiv Detail & Related papers (2022-10-27T17:59:09Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
We develop an algorithm to solve a class of non-gence minimax problems.
They can also work with both single or two mini-batch derivatives.
arXiv Detail & Related papers (2020-06-27T03:05:18Z) - Gradient-Free Methods for Saddle-Point Problem [125.99533416395765]
We generalize the approach Gasnikov et. al., 2017, which allows to solve (stochastic) convex optimization problems with an inexact gradient-free oracle.
Our approach reduces $fracnlog n$ times the required number of oracle calls.
In the second part of the paper, we analyze the case when such an assumption cannot be made, we propose a general approach on how to modernize the method to solve this problem.
arXiv Detail & Related papers (2020-05-12T16:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.