Gradient-Free Methods for Saddle-Point Problem
- URL: http://arxiv.org/abs/2005.05913v4
- Date: Sun, 11 Sep 2022 14:38:00 GMT
- Title: Gradient-Free Methods for Saddle-Point Problem
- Authors: Aleksandr Beznosikov, Abdurakhmon Sadiev, Alexander Gasnikov
- Abstract summary: We generalize the approach Gasnikov et. al., 2017, which allows to solve (stochastic) convex optimization problems with an inexact gradient-free oracle.
Our approach reduces $fracnlog n$ times the required number of oracle calls.
In the second part of the paper, we analyze the case when such an assumption cannot be made, we propose a general approach on how to modernize the method to solve this problem.
- Score: 125.99533416395765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the paper, we generalize the approach Gasnikov et. al, 2017, which allows
to solve (stochastic) convex optimization problems with an inexact
gradient-free oracle, to the convex-concave saddle-point problem. The proposed
approach works, at least, like the best existing approaches. But for a special
set-up (simplex type constraints and closeness of Lipschitz constants in 1 and
2 norms) our approach reduces $\frac{n}{\log n}$ times the required number of
oracle calls (function calculations). Our method uses a stochastic
approximation of the gradient via finite differences. In this case, the
function must be specified not only on the optimization set itself, but in a
certain neighbourhood of it. In the second part of the paper, we analyze the
case when such an assumption cannot be made, we propose a general approach on
how to modernize the method to solve this problem, and also we apply this
approach to particular cases of some classical sets.
Related papers
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.
In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
arXiv Detail & Related papers (2024-02-12T22:34:53Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features [65.64276393443346]
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints.
We present two new variants of the algorithms for minimization of the finite-sum gradient.
arXiv Detail & Related papers (2023-04-23T20:05:09Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - Adaptive extra-gradient methods for min-max optimization and games [35.02879452114223]
We present a new family of minmax optimization algorithms that automatically exploit the geometry of the gradient data observed at earlier iterations.
Thanks to this adaptation mechanism, the proposed method automatically detects whether the problem is smooth or not.
It converges to an $varepsilon$-optimal solution within $mathcalO (1/varepsilon)$ iterations in smooth problems, and within $mathcalO (1/varepsilon)$ iterations in non-smooth ones.
arXiv Detail & Related papers (2020-10-22T22:54:54Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
This paper considers convex optimization problems where the objective and constraint functions involve expectations with respect to the data indices or environmental variables.
Online and efficient approaches for solving such problems have not been widely studied.
We propose a novel conservative optimization algorithm (CSOA) that achieves zero constraint violation and $Oleft(T-frac12right)$ optimality gap.
arXiv Detail & Related papers (2020-08-13T08:56:24Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.