Hyperbolic Geometric Graph Representation Learning for
Hierarchy-imbalance Node Classification
- URL: http://arxiv.org/abs/2304.05059v1
- Date: Tue, 11 Apr 2023 08:38:05 GMT
- Title: Hyperbolic Geometric Graph Representation Learning for
Hierarchy-imbalance Node Classification
- Authors: Xingcheng Fu, Yuecen Wei, Qingyun Sun, Haonan Yuan, Jia Wu, Hao Peng
and Jianxin Li
- Abstract summary: We show that training labeled nodes with different hierarchical properties have a significant impact on the node classification tasks.
We propose a novel hyperbolic geometric hierarchy-imbalance learning framework, named HyperIMBA, to alleviate the hierarchy-imbalance issue.
Extensive experimental results demonstrate the superior effectiveness of HyperIMBA for hierarchy-imbalance node classification tasks.
- Score: 30.56321501873245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning unbiased node representations for imbalanced samples in the graph
has become a more remarkable and important topic. For the graph, a significant
challenge is that the topological properties of the nodes (e.g., locations,
roles) are unbalanced (topology-imbalance), other than the number of training
labeled nodes (quantity-imbalance). Existing studies on topology-imbalance
focus on the location or the local neighborhood structure of nodes, ignoring
the global underlying hierarchical properties of the graph, i.e., hierarchy. In
the real-world scenario, the hierarchical structure of graph data reveals
important topological properties of graphs and is relevant to a wide range of
applications. We find that training labeled nodes with different hierarchical
properties have a significant impact on the node classification tasks and
confirm it in our experiments. It is well known that hyperbolic geometry has a
unique advantage in representing the hierarchical structure of graphs.
Therefore, we attempt to explore the hierarchy-imbalance issue for node
classification of graph neural networks with a novelty perspective of
hyperbolic geometry, including its characteristics and causes. Then, we propose
a novel hyperbolic geometric hierarchy-imbalance learning framework, named
HyperIMBA, to alleviate the hierarchy-imbalance issue caused by uneven
hierarchy-levels and cross-hierarchy connectivity patterns of labeled
nodes.Extensive experimental results demonstrate the superior effectiveness of
HyperIMBA for hierarchy-imbalance node classification tasks.
Related papers
- What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - Recovering Missing Node Features with Local Structure-based Embeddings [34.79801041888119]
We present a framework to recover completely missing node features for a set of graphs.
Our approach incorporates prior information from both graph topology and existing nodal values.
arXiv Detail & Related papers (2023-09-16T18:23:14Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - Position-aware Structure Learning for Graph Topology-imbalance by
Relieving Under-reaching and Over-squashing [67.83086131278904]
Topology-imbalance is a graph-specific imbalance problem caused by the uneven topology positions of labeled nodes.
We propose a novel position-aware graph structure learning framework named PASTEL.
Our key insight is to enhance the connectivity of nodes within the same class for more supervision information.
arXiv Detail & Related papers (2022-08-17T14:04:21Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Topology-Imbalance Learning for Semi-Supervised Node Classification [34.964665078512596]
We argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes.
We devise an influence conflict detection -- based metric Totoro to measure the degree of graph topology imbalance.
We propose a model-agnostic method ReNode to address the topology-imbalance issue.
arXiv Detail & Related papers (2021-10-08T12:57:38Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Hierarchical Graph Capsule Network [78.4325268572233]
We propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies.
To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole)
arXiv Detail & Related papers (2020-12-16T04:13:26Z) - Robust Hierarchical Graph Classification with Subgraph Attention [18.7475578342125]
We introduce the concept of subgraph attention for graphs.
We propose a graph classification algorithm called SubGattPool.
We show that SubGattPool is able to improve the state-of-the-art or remains competitive on multiple publicly available graph classification datasets.
arXiv Detail & Related papers (2020-07-19T10:03:06Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.