One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural
Radiance Field
- URL: http://arxiv.org/abs/2304.05097v1
- Date: Tue, 11 Apr 2023 09:47:35 GMT
- Title: One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural
Radiance Field
- Authors: Weichuang Li, Longhao Zhang, Dong Wang, Bin Zhao, Zhigang Wang, Mulin
Chen, Bang Zhang, Zhongjian Wang, Liefeng Bo, Xuelong Li
- Abstract summary: Talking head generation aims to generate faces that maintain the identity information of the source image and imitate the motion of the driving image.
We propose HiDe-NeRF, which achieves high-fidelity and free-view talking-head synthesis.
- Score: 81.07651217942679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Talking head generation aims to generate faces that maintain the identity
information of the source image and imitate the motion of the driving image.
Most pioneering methods rely primarily on 2D representations and thus will
inevitably suffer from face distortion when large head rotations are
encountered. Recent works instead employ explicit 3D structural representations
or implicit neural rendering to improve performance under large pose changes.
Nevertheless, the fidelity of identity and expression is not so desirable,
especially for novel-view synthesis. In this paper, we propose HiDe-NeRF, which
achieves high-fidelity and free-view talking-head synthesis. Drawing on the
recently proposed Deformable Neural Radiance Fields, HiDe-NeRF represents the
3D dynamic scene into a canonical appearance field and an implicit deformation
field, where the former comprises the canonical source face and the latter
models the driving pose and expression. In particular, we improve fidelity from
two aspects: (i) to enhance identity expressiveness, we design a generalized
appearance module that leverages multi-scale volume features to preserve face
shape and details; (ii) to improve expression preciseness, we propose a
lightweight deformation module that explicitly decouples the pose and
expression to enable precise expression modeling. Extensive experiments
demonstrate that our proposed approach can generate better results than
previous works. Project page: https://www.waytron.net/hidenerf/
Related papers
- HeadRecon: High-Fidelity 3D Head Reconstruction from Monocular Video [37.53752896927615]
We study the reconstruction of high-fidelity 3D head models from arbitrary monocular videos.
We propose a prior-guided dynamic implicit neural network to tackle these problems.
arXiv Detail & Related papers (2023-12-14T12:38:56Z) - ImFace++: A Sophisticated Nonlinear 3D Morphable Face Model with Implicit Neural Representations [25.016000421755162]
This paper presents a novel 3D morphable face model, named ImFace++, to learn a sophisticated and continuous space with implicit neural representations.
ImFace++ first constructs two explicitly disentangled deformation fields to model complex shapes associated with identities and expressions.
A refinement displacement field within the template space is further incorporated, enabling fine-grained learning of individual-specific facial details.
arXiv Detail & Related papers (2023-12-07T03:53:53Z) - HAvatar: High-fidelity Head Avatar via Facial Model Conditioned Neural
Radiance Field [44.848368616444446]
We introduce a novel hybrid explicit-implicit 3D representation, Facial Model Conditioned Neural Radiance Field, which integrates the expressiveness of NeRF and the prior information from the parametric template.
By adopting an overall GAN-based architecture using an image-to-image translation network, we achieve high-resolution, realistic and view-consistent synthesis of dynamic head appearance.
arXiv Detail & Related papers (2023-09-29T10:45:22Z) - Parametric Implicit Face Representation for Audio-Driven Facial
Reenactment [52.33618333954383]
We propose a novel audio-driven facial reenactment framework that is both controllable and can generate high-quality talking heads.
Specifically, our parametric implicit representation parameterizes the implicit representation with interpretable parameters of 3D face models.
Our method can generate more realistic results than previous methods with greater fidelity to the identities and talking styles of speakers.
arXiv Detail & Related papers (2023-06-13T07:08:22Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field.
We show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.
arXiv Detail & Related papers (2022-09-15T15:28:45Z) - FDNeRF: Few-shot Dynamic Neural Radiance Fields for Face Reconstruction
and Expression Editing [27.014582934266492]
We propose a Few-shot Dynamic Neural Radiance Field (FDNeRF), the first NeRF-based method capable of reconstruction and expression editing of 3D faces.
Unlike existing dynamic NeRFs that require dense images as input and can only be modeled for a single identity, our method enables face reconstruction across different persons with few-shot inputs.
arXiv Detail & Related papers (2022-08-11T11:05:59Z) - Free-HeadGAN: Neural Talking Head Synthesis with Explicit Gaze Control [54.079327030892244]
Free-HeadGAN is a person-generic neural talking head synthesis system.
We show that modeling faces with sparse 3D facial landmarks are sufficient for achieving state-of-the-art generative performance.
arXiv Detail & Related papers (2022-08-03T16:46:08Z) - ImFace: A Nonlinear 3D Morphable Face Model with Implicit Neural
Representations [21.389170615787368]
This paper presents a novel 3D morphable face model, namely ImFace, to learn a nonlinear and continuous space with implicit neural representations.
It builds two explicitly disentangled deformation fields to model complex shapes associated with identities and expressions, respectively, and designs an improved learning strategy to extend embeddings of expressions.
In addition to ImFace, an effective preprocessing pipeline is proposed to address the issue of watertight input requirement in implicit representations.
arXiv Detail & Related papers (2022-03-28T05:37:59Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - HeadGAN: One-shot Neural Head Synthesis and Editing [70.30831163311296]
HeadGAN is a system that synthesises on 3D face representations and adapted to the facial geometry of any reference image.
The 3D face representation enables HeadGAN to be further used as an efficient method for compression and reconstruction and a tool for expression and pose editing.
arXiv Detail & Related papers (2020-12-15T12:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.