Free-HeadGAN: Neural Talking Head Synthesis with Explicit Gaze Control
- URL: http://arxiv.org/abs/2208.02210v1
- Date: Wed, 3 Aug 2022 16:46:08 GMT
- Title: Free-HeadGAN: Neural Talking Head Synthesis with Explicit Gaze Control
- Authors: Michail Christos Doukas, Evangelos Ververas, Viktoriia Sharmanska,
Stefanos Zafeiriou
- Abstract summary: Free-HeadGAN is a person-generic neural talking head synthesis system.
We show that modeling faces with sparse 3D facial landmarks are sufficient for achieving state-of-the-art generative performance.
- Score: 54.079327030892244
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Free-HeadGAN, a person-generic neural talking head synthesis
system. We show that modeling faces with sparse 3D facial landmarks are
sufficient for achieving state-of-the-art generative performance, without
relying on strong statistical priors of the face, such as 3D Morphable Models.
Apart from 3D pose and facial expressions, our method is capable of fully
transferring the eye gaze, from a driving actor to a source identity. Our
complete pipeline consists of three components: a canonical 3D key-point
estimator that regresses 3D pose and expression-related deformations, a gaze
estimation network and a generator that is built upon the architecture of
HeadGAN. We further experiment with an extension of our generator to
accommodate few-shot learning using an attention mechanism, in case more than
one source images are available. Compared to the latest models for reenactment
and motion transfer, our system achieves higher photo-realism combined with
superior identity preservation, while offering explicit gaze control.
Related papers
- Head Pose Estimation and 3D Neural Surface Reconstruction via Monocular Camera in situ for Navigation and Safe Insertion into Natural Openings [4.592222359553848]
We have chosen 3D Slicer as our base platform and monocular cameras are used as sensors.
We used the neural radiance fields (NeRF) algorithm to complete the 3D model reconstruction of the human head.
The individual's head pose, obtained through single-camera vision, is transmitted in real-time to the scene created within 3D Slicer.
arXiv Detail & Related papers (2024-06-18T20:42:09Z) - VOODOO 3D: Volumetric Portrait Disentanglement for One-Shot 3D Head
Reenactment [17.372274738231443]
We present a 3D-aware one-shot head reenactment method based on a fully neural disentanglement framework for source appearance and driver expressions.
Our method is real-time and produces high-fidelity and view-consistent output, suitable for 3D teleconferencing systems based on holographic displays.
arXiv Detail & Related papers (2023-12-07T19:19:57Z) - One-Shot High-Fidelity Talking-Head Synthesis with Deformable Neural
Radiance Field [81.07651217942679]
Talking head generation aims to generate faces that maintain the identity information of the source image and imitate the motion of the driving image.
We propose HiDe-NeRF, which achieves high-fidelity and free-view talking-head synthesis.
arXiv Detail & Related papers (2023-04-11T09:47:35Z) - OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis [81.70922087960271]
We present OmniAvatar, a novel geometry-guided 3D head synthesis model trained from in-the-wild unstructured images.
Our model can synthesize more preferable identity-preserved 3D heads with compelling dynamic details compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-03-27T18:36:53Z) - PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360$^{\circ}$ [17.355141949293852]
Existing 3D generative adversarial networks (GANs) for 3D human head synthesis are either limited to near-frontal views or hard to preserve 3D consistency in large view angles.
We propose PanoHead, the first 3D-aware generative model that enables high-quality view-consistent image synthesis of full heads in $360circ$ with diverse appearance and detailed geometry.
arXiv Detail & Related papers (2023-03-23T06:54:34Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
We propose a new conditional 3D face synthesis framework, which enables 3D controllability over generated face images.
At its core is a conditional Generative Occupancy Field (cGOF++) that effectively enforces the shape of the generated face to conform to a given 3D Morphable Model (3DMM) mesh.
Experiments validate the effectiveness of the proposed method and show more precise 3D controllability than state-of-the-art 2D-based controllable face synthesis methods.
arXiv Detail & Related papers (2022-11-23T19:02:50Z) - Next3D: Generative Neural Texture Rasterization for 3D-Aware Head
Avatars [36.4402388864691]
3D-aware generative adversarial networks (GANs) synthesize high-fidelity and multi-view-consistent facial images using only collections of single-view 2D imagery.
Recent efforts incorporate 3D Morphable Face Model (3DMM) to describe deformation in generative radiance fields either explicitly or implicitly.
We propose a novel 3D GAN framework for unsupervised learning of generative, high-quality and 3D-consistent facial avatars from unstructured 2D images.
arXiv Detail & Related papers (2022-11-21T06:40:46Z) - Controllable 3D Generative Adversarial Face Model via Disentangling
Shape and Appearance [63.13801759915835]
3D face modeling has been an active area of research in computer vision and computer graphics.
This paper proposes a new 3D face generative model that can decouple identity and expression.
arXiv Detail & Related papers (2022-08-30T13:40:48Z) - HeadGAN: One-shot Neural Head Synthesis and Editing [70.30831163311296]
HeadGAN is a system that synthesises on 3D face representations and adapted to the facial geometry of any reference image.
The 3D face representation enables HeadGAN to be further used as an efficient method for compression and reconstruction and a tool for expression and pose editing.
arXiv Detail & Related papers (2020-12-15T12:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.