論文の概要: NeAT: Neural Artistic Tracing for Beautiful Style Transfer
- arxiv url: http://arxiv.org/abs/2304.05139v1
- Date: Tue, 11 Apr 2023 11:08:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 15:12:03.287109
- Title: NeAT: Neural Artistic Tracing for Beautiful Style Transfer
- Title(参考訳): NeAT:美しいスタイルのトランスファーのためのニューラルアートトラクション
- Authors: Dan Ruta, Andrew Gilbert, John Collomosse, Eli Shechtman, Nicholas
Kolkin
- Abstract要約: スタイル転送は、第2のターゲット画像の芸術的スタイルでソース画像の意味内容を再現するタスクである。
我々は、新しい最先端のフィードフォワードスタイル転送方式NeATを提案する。
我々はBBST-4Mを用いて、様々なスタイルにわたるNeATの一般化を改善し、測定する。
- 参考スコア(独自算出の注目度): 29.38791171225834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Style transfer is the task of reproducing the semantic contents of a source
image in the artistic style of a second target image. In this paper, we present
NeAT, a new state-of-the art feed-forward style transfer method. We
re-formulate feed-forward style transfer as image editing, rather than image
generation, resulting in a model which improves over the state-of-the-art in
both preserving the source content and matching the target style. An important
component of our model's success is identifying and fixing "style halos", a
commonly occurring artefact across many style transfer techniques. In addition
to training and testing on standard datasets, we introduce the BBST-4M dataset,
a new, large scale, high resolution dataset of 4M images. As a component of
curating this data, we present a novel model able to classify if an image is
stylistic. We use BBST-4M to improve and measure the generalization of NeAT
across a huge variety of styles. Not only does NeAT offer state-of-the-art
quality and generalization, it is designed and trained for fast inference at
high resolution.
- Abstract(参考訳): スタイル転送は、第2のターゲット画像の芸術的スタイルにおいて、ソース画像の意味的内容を再現するタスクである。
本稿では,新しい最先端のフィードフォワード型転送方式NeATを提案する。
我々は、画像生成ではなく、フィードフォワードスタイルの転送を画像編集として再フォーマットし、ソースコンテンツの保存とターゲットスタイルの整合性の両方において最先端のモデルを構築する。
私たちのモデルの成功の重要なコンポーネントは、多くのスタイル転送テクニックで一般的に発生するアーティファクトである"style halos"を特定し、修正することです。
標準データセットのトレーニングとテストに加えて,新たな大規模で高解像度な4M画像データセットであるBBST-4Mデータセットを導入している。
このデータをキュレートする要素として、画像がスタイリスティックかどうかを分類できる新しいモデルを提案する。
我々はBBST-4Mを用いて、様々なスタイルにわたるNeATの一般化を改善し、測定する。
NeATは最先端の品質と一般化を提供するだけでなく、高速な推論を高解像度で設計し、訓練する。
関連論文リスト
- MuseumMaker: Continual Style Customization without Catastrophic Forgetting [50.12727620780213]
本研究では,一組のカスタマイズスタイルを終末的に追従することで,画像の合成を可能にする方法であるMuseumMakerを提案する。
新しいカスタマイズスタイルに直面すると、新しい画像生成のためのトレーニングデータのスタイルを抽出し学習するスタイル蒸留損失モジュールを開発する。
これは、新しい訓練画像の内容による学習バイアスを最小限に抑え、少数ショット画像によって引き起こされる破滅的な過適合問題に対処することができる。
論文 参考訳(メタデータ) (2024-04-25T13:51:38Z) - Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt [12.27693060663517]
芸術的スタイルの転送は、学習した芸術的スタイルを任意のコンテンツイメージに転送することを目的としており、芸術的なスタイル化されたイメージを生成する。
LSASTと呼ばれる,事前学習型拡散型アートスタイルトランスファー手法を提案する。
提案手法は,最先端の芸術的スタイル伝達法よりも,よりリアルな芸術的スタイル化画像を生成することができる。
論文 参考訳(メタデータ) (2024-04-17T15:28:53Z) - ArtBank: Artistic Style Transfer with Pre-trained Diffusion Model and
Implicit Style Prompt Bank [9.99530386586636]
アートスタイルの転送は、学習したアートスタイルでコンテンツイメージを再描画することを目的としている。
既存のスタイル転送手法は、小さなモデルベースアプローチと、事前訓練された大規模モデルベースアプローチの2つのカテゴリに分けられる。
本研究では,高度にリアルなスタイライズされた画像を生成するために,アートバンクという新しいスタイル転送フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T05:53:40Z) - TSSAT: Two-Stage Statistics-Aware Transformation for Artistic Style
Transfer [22.16475032434281]
芸術的スタイルの転送は、対象の芸術的スタイルで与えられた写真をレンダリングすることで、新しい芸術的イメージを作成することを目的としている。
既存の手法では、グローバルな統計や局所的なパッチに基づいてスタイルを学習し、実際の描画過程の注意深い考慮を欠いている。
本稿では,コンテンツとスタイルの特徴のグローバルな統計を整合させて,まずグローバルなスタイル基盤を構築する2段階統計認識変換(TSSAT)モジュールを提案する。
コンテンツとスタイルの表現をさらに強化するために、注意に基づくコンテンツ損失とパッチベースのスタイル損失という2つの新しい損失を導入する。
論文 参考訳(メタデータ) (2023-09-12T07:02:13Z) - DIFF-NST: Diffusion Interleaving For deFormable Neural Style Transfer [27.39248034592382]
変形可能なスタイル転送を実現しつつ,新しいモデルのクラスを用いてスタイル転送を行う。
これらのモデルの先行モデルを活用することで、推論時に新たな芸術的コントロールが公開できることを示す。
論文 参考訳(メタデータ) (2023-07-09T12:13:43Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
本論文では,自然言語を用いて抽象芸術スタイルを記述するスタイル転送手法であるStylerDALLEを提案する。
具体的には、非自己回帰的なトークンシーケンス変換として、言語誘導型転送タスクを定式化する。
スタイル情報を組み込むために,CLIPに基づく言語指導による強化学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-16T12:44:44Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot
Learning [89.86971464234533]
Cross-Domain Few-Shot Learning (CD-FSL)は、最近登場したタスクで、異なるドメインにわたる数ショットの学習に対処している。
本稿では,モデルに依存しないメタスタイル逆アタック(StyleAdv)手法と,新しいスタイル逆アタック手法を提案する。
本手法は視覚的スタイルに対して徐々に頑健であり,新たなターゲットデータセットの一般化能力を高める。
論文 参考訳(メタデータ) (2023-02-18T11:54:37Z) - Neural Artistic Style Transfer with Conditional Adversaria [0.0]
神経芸術スタイル変換モデルは、有名な画像のスタイルを追加することで、単純な画像の外観を変更することができる。
本稿では,画像独立型ニューラルスタイル転送モデルに向けた2つの手法を提案する。
我々の新しい貢献は、モデルアーキテクチャによる循環的一貫性を保証する一方向GANモデルである。
論文 参考訳(メタデータ) (2023-02-08T04:34:20Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Geometric Style Transfer [74.58782301514053]
幾何学的スタイルの伝達をサポートするニューラルアーキテクチャを導入する。
新しいアーキテクチャはテクスチャスタイルを転送するネットワークに先立って実行される。
ユーザーはコンテント/スタイルのペアを一般的なように入力したり、コンテント/テクスチャスタイル/幾何学スタイルのトリプルを入力できる。
論文 参考訳(メタデータ) (2020-07-10T16:33:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。