論文の概要: Towards preserving word order importance through Forced Invalidation
- arxiv url: http://arxiv.org/abs/2304.05221v1
- Date: Tue, 11 Apr 2023 13:42:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 14:43:47.976651
- Title: Towards preserving word order importance through Forced Invalidation
- Title(参考訳): 強制無効化による語順重要度維持に向けて
- Authors: Hadeel Al-Negheimish, Pranava Madhyastha, Alessandra Russo
- Abstract要約: 事前学習された言語モデルは単語の順序に敏感であることを示す。
我々は,単語順序の重要性を維持するために強制的無効化を提案する。
実験の結果,強制的無効化は単語順に対するモデルの感度を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 80.33036864442182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large pre-trained language models such as BERT have been widely used as a
framework for natural language understanding (NLU) tasks. However, recent
findings have revealed that pre-trained language models are insensitive to word
order. The performance on NLU tasks remains unchanged even after randomly
permuting the word of a sentence, where crucial syntactic information is
destroyed. To help preserve the importance of word order, we propose a simple
approach called Forced Invalidation (FI): forcing the model to identify
permuted sequences as invalid samples. We perform an extensive evaluation of
our approach on various English NLU and QA based tasks over BERT-based and
attention-based models over word embeddings. Our experiments demonstrate that
Forced Invalidation significantly improves the sensitivity of the models to
word order.
- Abstract(参考訳): BERTのような大規模な事前学習言語モデルは、自然言語理解(NLU)タスクのフレームワークとして広く使われている。
しかし、近年の研究では、事前学習された言語モデルは語順に敏感でないことが判明している。
NLUタスクのパフォーマンスは、重要な構文情報が破壊される文の単語をランダムに置換しても変化しない。
本稿では,単語順序の重要性を保たせるために,強制的無効化 (FI: Forced Invalidation) と呼ばれる単純な手法を提案する。
単語埋め込みに対するBERTベースおよび注目モデルに対して、様々な英語NLUおよびQAベースのタスクに対して、我々のアプローチを広範囲に評価する。
実験の結果,強制的無効化は単語順に対するモデルの感度を著しく向上させることが示された。
関連論文リスト
- Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。
GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。
テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) (2021-11-04T12:59:55Z) - AStitchInLanguageModels: Dataset and Methods for the Exploration of
Idiomaticity in Pre-Trained Language Models [7.386862225828819]
本研究は、MWEを含む自然発生文のデータセットを、細かな意味の集合に手作業で分類する。
我々は,このデータセットを,idiomを含む文の表現生成における言語モデルの有効性と,idiomを用いた言語モデルの有効性を検証するために,2つのタスクで使用する。
論文 参考訳(メタデータ) (2021-09-09T16:53:17Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z) - GiBERT: Introducing Linguistic Knowledge into BERT through a Lightweight
Gated Injection Method [29.352569563032056]
本稿では,言語知識を単語埋め込みの形で,事前学習したBERTに明示的に注入する手法を提案する。
依存性ベースと逆適合の埋め込みを注入する場合、複数のセマンティックな類似性データセットのパフォーマンス改善は、そのような情報が有益であり、現在元のモデルから欠落していることを示している。
論文 参考訳(メタデータ) (2020-10-23T17:00:26Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
訓練済みの言語モデルから下流の言語間タスクへの微調整は、有望な結果を示している。
ダウンストリームタスクに微調整する場合、継続学習を活用して、事前学習したモデルの言語間能力を維持する。
提案手法は、ゼロショット言語間タグ付けや名前付きエンティティ認識タスクにおいて、他の微調整ベースラインよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-04-29T14:07:18Z) - Syntactic Data Augmentation Increases Robustness to Inference Heuristics [27.513414694720716]
BERTのような事前訓練されたニューラルネットワークモデルは、標準データセットに対して高い精度を示すが、制御されたチャレンジセットに対する単語順序に対する感度の驚くべき欠如がある。
我々は,MNLIコーパスからの文に構文変換を適用して生成した構文的情報的例を用いて,標準学習セットを増強するいくつかの手法について検討する。
MNLIテストセットの性能に影響を与えることなく、単語の順序に対する感度を0.28から0.73に診断する制御例におけるBERTの精度を改善した。
論文 参考訳(メタデータ) (2020-04-24T21:35:26Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。