FIR-based Future Trajectory Prediction in Nighttime Autonomous Driving
- URL: http://arxiv.org/abs/2304.05345v1
- Date: Fri, 31 Mar 2023 06:20:10 GMT
- Title: FIR-based Future Trajectory Prediction in Nighttime Autonomous Driving
- Authors: Alireza Rahimpour, Navid Fallahinia, Devesh Upadhyay, Justin Miller
- Abstract summary: Collisions with large animals such as deer in low light cause significant cost and damage every year.
In this paper, we propose the first AI-based method for future trajectory prediction of large animals.
Our experiments show promising results of the proposed framework in adverse conditions.
- Score: 3.689539481706835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of the current collision avoidance systems in Autonomous
Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) can be drastically
affected by low light and adverse weather conditions. Collisions with large
animals such as deer in low light cause significant cost and damage every year.
In this paper, we propose the first AI-based method for future trajectory
prediction of large animals and mitigating the risk of collision with them in
low light. In order to minimize false collision warnings, in our multi-step
framework, first, the large animal is accurately detected and a preliminary
risk level is predicted for it and low-risk animals are discarded. In the next
stage, a multi-stream CONV-LSTM-based encoder-decoder framework is designed to
predict the future trajectory of the potentially high-risk animals. The
proposed model uses camera motion prediction as well as the local and global
context of the scene to generate accurate predictions. Furthermore, this paper
introduces a new dataset of FIR videos for large animal detection and risk
estimation in real nighttime driving scenarios. Our experiments show promising
results of the proposed framework in adverse conditions. Our code is available
online.
Related papers
- Endangered Alert: A Field-Validated Self-Training Scheme for Detecting and Protecting Threatened Wildlife on Roads and Roadsides [10.412505957288406]
This paper presents an innovative self-training methodology aimed at detecting rare animals, such as the cassowary in Australia.
The proposed method addresses critical real-world challenges, including acquiring and labelling sensor data for rare animal species.
It achieves this by leveraging cloud and edge computing, and automatic data labelling to improve the detection performance of the field-deployed model.
arXiv Detail & Related papers (2024-12-16T07:44:27Z) - Fast and Efficient Transformer-based Method for Bird's Eye View Instance Prediction [0.8458547573621331]
This paper introduces a novel BEV instance prediction architecture based on a simplified paradigm.
The proposed system prioritizes speed, aiming at reduced parameter counts and inference times.
implementation of the proposed architecture is optimized for performance improvements in PyTorch version 2.1.
arXiv Detail & Related papers (2024-11-11T10:35:23Z) - Risk-Aware Vehicle Trajectory Prediction Under Safety-Critical Scenarios [25.16311876790003]
This paper proposes a risk-aware trajectory prediction framework tailored to safety-critical scenarios.
We introduce a safety-critical trajectory prediction dataset and tailored evaluation metrics.
Results demonstrate the superior performance of our model, with a significant improvement in most metrics.
arXiv Detail & Related papers (2024-07-18T13:00:01Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Exploring the Potential of Multi-Modal AI for Driving Hazard Prediction [18.285227911703977]
We formulate it as a task of anticipating impending accidents using a single input image captured by car dashcams.
The problem needs predicting and reasoning about future events based on uncertain observations.
To enable research in this understudied area, a new dataset named the DHPR dataset is created.
arXiv Detail & Related papers (2023-10-07T03:16:30Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - COPILOT: Human-Environment Collision Prediction and Localization from
Egocentric Videos [62.34712951567793]
The ability to forecast human-environment collisions from egocentric observations is vital to enable collision avoidance in applications such as VR, AR, and wearable assistive robotics.
We introduce the challenging problem of predicting collisions in diverse environments from multi-view egocentric videos captured from body-mounted cameras.
We propose a transformer-based model called COPILOT to perform collision prediction and localization simultaneously.
arXiv Detail & Related papers (2022-10-04T17:49:23Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - How Do We Fail? Stress Testing Perception in Autonomous Vehicles [40.19326157052966]
This paper presents a method for characterizing failures of LiDAR-based perception systems for autonomous vehicles in adverse weather conditions.
We develop a methodology based in reinforcement learning to find likely failures in object tracking and trajectory prediction due to sequences of disturbances.
arXiv Detail & Related papers (2022-03-26T20:48:09Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.