NsBM-GAT: A Non-stationary Block Maximum and Graph Attention Framework for General Traffic Crash Risk Prediction
- URL: http://arxiv.org/abs/2503.04018v1
- Date: Thu, 06 Mar 2025 02:12:40 GMT
- Title: NsBM-GAT: A Non-stationary Block Maximum and Graph Attention Framework for General Traffic Crash Risk Prediction
- Authors: Kequan Chen, Pan Liu, Yuxuan Wang, David Z. W. Wang, Yifan Dai, Zhibin Li,
- Abstract summary: Existing crash risk prediction models rely on hypothetical scenarios deemed dangerous by researchers.<n>Dashcam videos capture the pre-crash behavior of individual vehicles, but they often lack critical information about the movements of surrounding vehicles.<n>We propose a novel non-stationary extreme value theory (EVT) to capture the interactive behavior between a vehicle and its surrounding vehicles.
- Score: 11.444259609536164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of traffic crash risks for individual vehicles is essential for enhancing vehicle safety. While significant attention has been given to traffic crash risk prediction, existing studies face two main challenges: First, due to the scarcity of individual vehicle data before crashes, most models rely on hypothetical scenarios deemed dangerous by researchers. This raises doubts about their applicability to actual pre-crash conditions. Second, some crash risk prediction frameworks were learned from dashcam videos. Although such videos capture the pre-crash behavior of individual vehicles, they often lack critical information about the movements of surrounding vehicles. However, the interaction between a vehicle and its surrounding vehicles is highly influential in crash occurrences. To overcome these challenges, we propose a novel non-stationary extreme value theory (EVT), where the covariate function is optimized in a nonlinear fashion using a graph attention network. The EVT component incorporates the stochastic nature of crashes through probability distribution, which enhances model interpretability. Notably, the nonlinear covariate function enables the model to capture the interactive behavior between the target vehicle and its multiple surrounding vehicles, facilitating crash risk prediction across different driving tasks. We train and test our model using 100 sets of vehicle trajectory data before real crashes, collected via drones over three years from merging and weaving segments. We demonstrate that our model successfully learns micro-level precursors of crashes and fits a more accurate distribution with the aid of the nonlinear covariate function. Our experiments on the testing dataset show that the proposed model outperforms existing models by providing more accurate predictions for both rear-end and sideswipe crashes simultaneously.
Related papers
- Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
In driving scenarios, a vehicle's trajectory is determined by the decision-making process of human drivers.<n>Previous models fail to capture the true intentions of human drivers, leading to suboptimal performance in long-term trajectory prediction.<n>We introduce a Cognitive-Informed Transformer (CITF) that incorporates a cognitive concept, Perceived Safety, to interpret drivers' decision-making mechanisms.
arXiv Detail & Related papers (2025-02-27T13:43:17Z) - Explainable Lane Change Prediction for Near-Crash Scenarios Using Knowledge Graph Embeddings and Retrieval Augmented Generation [0.0]
Lane-changing maneuvers, particularly those executed abruptly or in risky situations, are a significant cause of road traffic accidents.<n>In this work, we focus on predicting risky lane changes using the CRASH dataset.<n>We leverage KG and Bayesian inference to predict these maneuvers using linguistic contextual information.
arXiv Detail & Related papers (2025-01-20T16:02:26Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.
Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.
This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
We introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods.
We propose the Binary Adaptive Loss for Early Anticipation (BA-LEA) to address the prevalent challenge of skewed data distribution in traffic accident datasets.
arXiv Detail & Related papers (2024-09-02T13:46:25Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.