論文の概要: Human-AI Co-Creation Approach to Find Forever Chemicals Replacements
- arxiv url: http://arxiv.org/abs/2304.05389v1
- Date: Tue, 11 Apr 2023 17:58:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 13:49:08.560561
- Title: Human-AI Co-Creation Approach to Find Forever Chemicals Replacements
- Title(参考訳): 化学代替品発見のための人間-AI共同開発手法
- Authors: Juliana Jansen Ferreira, Vin\'icius Segura, Joana G. R. Souza, Gabriel
D. J. Barbosa, Jo\~ao Gallas, Renato Cerqueira, Dmitry Zubarev
- Abstract要約: 我々は、人間とAIの共同創造プロセスをサポートするソフトウェアフレームワークを設計しています。
我々のアプローチは、物質発見を加速するために、AI能力と主題の専門家のドメイン固有の知識を組み合わせる。
- 参考スコア(独自算出の注目度): 3.122672716129844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models are a powerful tool in AI for material discovery. We are
designing a software framework that supports a human-AI co-creation process to
accelerate finding replacements for the ``forever chemicals''-- chemicals that
enable our modern lives, but are harmful to the environment and the human
health. Our approach combines AI capabilities with the domain-specific tacit
knowledge of subject matter experts to accelerate the material discovery. Our
co-creation process starts with the interaction between the subject matter
experts and a generative model that can generate new molecule designs. In this
position paper, we discuss our hypothesis that these subject matter experts can
benefit from a more iterative interaction with the generative model, asking for
smaller samples and ``guiding'' the exploration of the discovery space with
their knowledge.
- Abstract(参考訳): 生成モデルは、物質発見のためのAIの強力なツールである。
我々は、現代生活を可能にする「常用化学物質」の代替品の発見を加速するために、人間とAIの共創プロセスをサポートするソフトウェアフレームワークを設計していますが、環境や人間の健康には有害です。
我々のアプローチは、物質発見を加速するために、AI能力と主題の専門家のドメイン固有の暗黙の知識を組み合わせる。
私たちの共同生成プロセスは、主題の専門家と新しい分子デザインを生み出す生成モデルとの相互作用から始まります。
本稿では,これらの主題の専門家がより反復的に生成モデルと相互作用し,より小さなサンプルを求め,その知識を用いて発見空間の探索を'誘導'する,という仮説について議論する。
関連論文リスト
- An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - AIMS-EREA -- A framework for AI-accelerated Innovation of Materials for
Sustainability -- for Environmental Remediation and Energy Applications [0.0]
AIMS-EREAは、マテリアルサイエンス理論のベストをジェネレーティブAIのパワーと組み合わせる新しいフレームワークです。
これはまた、有害な残留物や反応の副産物の生成の可能性を排除するのに役立つ。
論文 参考訳(メタデータ) (2023-11-18T12:35:45Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - Toward Human-AI Co-creation to Accelerate Material Discovery [3.7993640140693605]
早急な問題に取り組むために、科学の急速な進歩を達成するために、我々の社会にはますます必要性が増している。
化学のような特定の分野において、科学的発見は提案された新しい解のリスクを評価する余分な負担を負う。
本稿では,人間とAIの共創が最初に発見されるまでの時間を短縮することを目的としたフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-05T17:48:59Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Learning to Discover Medicines [21.744555824342264]
強力なコンピューティング、大規模なバイオメディカルデータベース、そしてディープラーニングのブレークスルーによって、現代のAIが利用できることは、このループを壊そうとする新たな希望である。
本稿では,この課題を解決しようとするAI方法論の最近の進歩を概観する。
我々は、医薬品発見のためのAIの大規模かつ急速に成長する文献を、比較的安定した3つのサブエリアにまとめる。
論文 参考訳(メタデータ) (2022-02-14T23:43:51Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - ChemoVerse: Manifold traversal of latent spaces for novel molecule
discovery [0.7742297876120561]
所望の化学的性質を持つ分子構造を同定することが不可欠である。
ニューラルネットワークと機械学習を用いた生成モデルの最近の進歩は、薬物のような化合物の仮想ライブラリの設計に広く利用されている。
論文 参考訳(メタデータ) (2020-09-29T12:11:40Z) - Generative chemistry: drug discovery with deep learning generative
models [0.0]
本稿では, 創薬プロセスの迅速化に向け, 創薬モデルによる生成化学の最近の進歩を概観する。
ニューラルネットワーク,変分オートエンコーダ,逆数オートエンコーダ,複合生成のための生成逆数ネットワークなど,最先端の生成アーキテクチャの利用に関する詳細な議論が注目されている。
論文 参考訳(メタデータ) (2020-08-20T14:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。