SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model
- URL: http://arxiv.org/abs/2304.05396v1
- Date: Mon, 10 Apr 2023 18:20:29 GMT
- Title: SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model
- Authors: Saikat Roy, Tassilo Wald, Gregor Koehler, Maximilian R. Rokuss, Nico
Disch, Julius Holzschuh, David Zimmerer, Klaus H. Maier-Hein
- Abstract summary: We evaluate the zero-shot capabilities of the Segment Anything Model for medical image segmentation.
We show that SAM generalizes well to CT data, making it a potential catalyst for the advancement of semi-automatic segmentation tools.
- Score: 1.1221592576472588
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Foundation models have taken over natural language processing and image
generation domains due to the flexibility of prompting. With the recent
introduction of the Segment Anything Model (SAM), this prompt-driven paradigm
has entered image segmentation with a hitherto unexplored abundance of
capabilities. The purpose of this paper is to conduct an initial evaluation of
the out-of-the-box zero-shot capabilities of SAM for medical image
segmentation, by evaluating its performance on an abdominal CT organ
segmentation task, via point or bounding box based prompting. We show that SAM
generalizes well to CT data, making it a potential catalyst for the advancement
of semi-automatic segmentation tools for clinicians. We believe that this
foundation model, while not reaching state-of-the-art segmentation performance
in our investigations, can serve as a highly potent starting point for further
adaptations of such models to the intricacies of the medical domain. Keywords:
medical image segmentation, SAM, foundation models, zero-shot learning
Related papers
- Image Segmentation in Foundation Model Era: A Survey [99.19456390358211]
Current research in image segmentation lacks a detailed analysis of distinct characteristics, challenges, and solutions associated with these advancements.
This survey seeks to fill this gap by providing a thorough review of cutting-edge research centered around FM-driven image segmentation.
An exhaustive overview of over 300 segmentation approaches is provided to encapsulate the breadth of current research efforts.
arXiv Detail & Related papers (2024-08-23T10:07:59Z) - Boosting Medical Image Classification with Segmentation Foundation Model [19.41887842350247]
The Segment Anything Model (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
No studies have shown how to harness the power of SAM for medical image classification.
We introduce SAMAug-C, an innovative augmentation method based on SAM for augmenting classification datasets.
arXiv Detail & Related papers (2024-06-16T17:54:49Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - Segment Anything Model for Medical Image Segmentation: Current
Applications and Future Directions [8.216028136706948]
The recent introduction of the Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation.
We provide a comprehensive overview of recent endeavors aimed at extending the efficacy of SAM to medical image segmentation tasks.
We explore potential avenues for future research directions in SAM's role within medical image segmentation.
arXiv Detail & Related papers (2024-01-07T14:25:42Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Towards Segment Anything Model (SAM) for Medical Image Segmentation: A
Survey [8.76496233192512]
We discuss efforts to extend the success of the Segment Anything Model to medical image segmentation tasks.
Many insights are drawn to guide future research to develop foundation models for medical image analysis.
arXiv Detail & Related papers (2023-05-05T16:48:45Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
We report quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks.
Our study indicates the versatility of generalist vision foundation models on medical imaging.
arXiv Detail & Related papers (2023-04-25T08:07:59Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.