Boosting Medical Image Classification with Segmentation Foundation Model
- URL: http://arxiv.org/abs/2406.11026v1
- Date: Sun, 16 Jun 2024 17:54:49 GMT
- Title: Boosting Medical Image Classification with Segmentation Foundation Model
- Authors: Pengfei Gu, Zihan Zhao, Hongxiao Wang, Yaopeng Peng, Yizhe Zhang, Nishchal Sapkota, Chaoli Wang, Danny Z. Chen,
- Abstract summary: The Segment Anything Model (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images.
No studies have shown how to harness the power of SAM for medical image classification.
We introduce SAMAug-C, an innovative augmentation method based on SAM for augmenting classification datasets.
- Score: 19.41887842350247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Segment Anything Model (SAM) exhibits impressive capabilities in zero-shot segmentation for natural images. Recently, SAM has gained a great deal of attention for its applications in medical image segmentation. However, to our best knowledge, no studies have shown how to harness the power of SAM for medical image classification. To fill this gap and make SAM a true ``foundation model'' for medical image analysis, it is highly desirable to customize SAM specifically for medical image classification. In this paper, we introduce SAMAug-C, an innovative augmentation method based on SAM for augmenting classification datasets by generating variants of the original images. The augmented datasets can be used to train a deep learning classification model, thereby boosting the classification performance. Furthermore, we propose a novel framework that simultaneously processes raw and SAMAug-C augmented image input, capitalizing on the complementary information that is offered by both. Experiments on three public datasets validate the effectiveness of our new approach.
Related papers
- SAM-UNet:Enhancing Zero-Shot Segmentation of SAM for Universal Medical Images [40.4422523499489]
Segment Anything Model (SAM) has demonstrated impressive performance on a wide range of natural image segmentation tasks.
We propose SAMUNet, a new foundation model which incorporates U-Net to the original SAM, to fully leverage the powerful contextual modeling ability of convolutions.
We train SAM-UNet on SA-Med2D-16M, the largest 2-dimensional medical image segmentation dataset to date, yielding a universal pretrained model for medical images.
arXiv Detail & Related papers (2024-08-19T11:01:00Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - Segment Any Medical Model Extended [39.80956010574076]
We introduce SAMM Extended (SAMME), a platform that integrates new SAM variant models, adopts faster communication protocols, accommodates new interactive modes, and allows for fine-tuning of subcomponents of the models.
These features can expand the potential of foundation models like SAM, and the results can be translated to applications such as image-guided therapy, mixed reality interaction, robotic navigation, and data augmentation.
arXiv Detail & Related papers (2024-03-26T21:37:25Z) - Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively [69.97238935096094]
The Open-Vocabulary SAM is a SAM-inspired model designed for simultaneous interactive segmentation and recognition.
Our method can segment and recognize approximately 22,000 classes.
arXiv Detail & Related papers (2024-01-05T18:59:22Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
We introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation.
Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes.
In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning.
arXiv Detail & Related papers (2023-08-17T02:51:01Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
The Segment Anything Model (SAM) is a recently developed large model for general-purpose segmentation for computer vision tasks.
SAM was trained using 11 million images with over 1 billion masks and can produce segmentation results for a wide range of objects in natural scene images.
This paper shows that although SAM does not immediately give high-quality segmentation for medical image data, its generated masks, features, and stability scores are useful for building and training better medical image segmentation models.
arXiv Detail & Related papers (2023-04-22T07:11:53Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) is a foundation model that is intended to segment user-defined objects of interest in an interactive manner.
We evaluate SAM's ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies.
arXiv Detail & Related papers (2023-04-20T17:50:18Z) - SAM.MD: Zero-shot medical image segmentation capabilities of the Segment
Anything Model [1.1221592576472588]
We evaluate the zero-shot capabilities of the Segment Anything Model for medical image segmentation.
We show that SAM generalizes well to CT data, making it a potential catalyst for the advancement of semi-automatic segmentation tools.
arXiv Detail & Related papers (2023-04-10T18:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.