Exact solution for the interaction of two decaying quantized fields
- URL: http://arxiv.org/abs/2304.05566v1
- Date: Wed, 12 Apr 2023 02:05:14 GMT
- Title: Exact solution for the interaction of two decaying quantized fields
- Authors: L. Hern\'andez-S\'anchez, I. Ramos-Prieto, F. Soto-Eguibar, H. M.
Moya-Cessa
- Abstract summary: We show that the Markovian dynamics of two coupled harmonic oscillators may be analyzed using a Schr"odinger equation and an effective non-Hermitian Hamiltonian.
This may be achieved by a non-unitary transformation that involves superoperators.
We may diagonalize the effective non-Hermitian Hamiltonian to obtain the evolution of any input state in a fully quantum domain.
- Score: 0.9449650062296824
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We show that the Markovian dynamics of two coupled harmonic oscillators may
be analyzed using a Schr\"odinger equation and an effective non-Hermitian
Hamiltonian. This may be achieved by a non-unitary transformation that involves
superoperators; such transformation enables the removal of quantum jump
superoperators, that allows us to rewrite the Lindblad master equation in terms
of a von Neumann-like equation with an effective non-Hermitian Hamiltonian.
This may be generalized to an arbitrary number of interacting fields. Finally,
by applying an extra non-unitary transformation, we may diagonalize the
effective non-Hermitian Hamiltonian to obtain the evolution of any input state
in a fully quantum domain.
Related papers
- Exact solution of the master equation for interacting quantized fields at finite temperature decay [0.0]
We analyze the Markovian dynamics of a quantum system involving the interaction of two quantized fields at finite temperature decay.
We reformulate the Lindblad master equation into a von Neumann-like equation with an effective non-Hermitian Hamiltonian.
This method provides a framework to calculate the evolution of any initial state in a fully quantum regime.
arXiv Detail & Related papers (2024-10-11T00:21:54Z) - Non-Hermiticity in quantum nonlinear optics through symplectic
transformations [0.0]
We show that second-quantised Hermitian Hamiltonians on the Fock space give rise to non-Hermitian effective Hamiltonians.
We create a quantum optical scheme for simulating arbitrary non-unitary processes by way of singular value decomposition.
arXiv Detail & Related papers (2023-10-06T18:41:46Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Eigenvalues and Eigenstates of Quantum Rabi Model [0.0]
We present an approach to the exact diagonalization of the quantum Rabi Hamiltonian.
It is shown that the obtained eigenstates can be represented in the basis of the eigenstates of the Jaynes-Cummings Hamiltonian.
arXiv Detail & Related papers (2021-04-26T17:45:41Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.