Looking Similar, Sounding Different: Leveraging Counterfactual Cross-Modal Pairs for Audiovisual Representation Learning
- URL: http://arxiv.org/abs/2304.05600v2
- Date: Sat, 8 Jun 2024 04:19:06 GMT
- Title: Looking Similar, Sounding Different: Leveraging Counterfactual Cross-Modal Pairs for Audiovisual Representation Learning
- Authors: Nikhil Singh, Chih-Wei Wu, Iroro Orife, Mahdi Kalayeh,
- Abstract summary: We use dubbed versions of movies and television shows to augment cross-modal contrastive learning.
Our approach learns to represent alternate audio tracks, differing only in speech, similarly to the same video.
- Score: 3.6204417068568424
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Audiovisual representation learning typically relies on the correspondence between sight and sound. However, there are often multiple audio tracks that can correspond with a visual scene. Consider, for example, different conversations on the same crowded street. The effect of such counterfactual pairs on audiovisual representation learning has not been previously explored. To investigate this, we use dubbed versions of movies and television shows to augment cross-modal contrastive learning. Our approach learns to represent alternate audio tracks, differing only in speech, similarly to the same video. Our results, from a comprehensive set of experiments investigating different training strategies, show this general approach improves performance on a range of downstream auditory and audiovisual tasks, without majorly affecting linguistic task performance overall. These findings highlight the importance of considering speech variation when learning scene-level audiovisual correspondences and suggest that dubbed audio can be a useful augmentation technique for training audiovisual models toward more robust performance on diverse downstream tasks.
Related papers
- From Vision to Audio and Beyond: A Unified Model for Audio-Visual Representation and Generation [17.95017332858846]
We introduce a novel framework called Vision to Audio and Beyond (VAB) to bridge the gap between audio-visual representation learning and vision-to-audio generation.
VAB uses a pre-trained audio tokenizer and an image encoder to obtain audio tokens and visual features, respectively.
Our experiments showcase the efficiency of VAB in producing high-quality audio from video, and its capability to acquire semantic audio-visual features.
arXiv Detail & Related papers (2024-09-27T20:26:34Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform.
We adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions.
We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets.
arXiv Detail & Related papers (2023-03-28T22:45:40Z) - VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency [111.55430893354769]
Given a video, the goal is to extract the speech associated with a face in spite of simultaneous background sounds and/or other human speakers.
Our approach jointly learns audio-visual speech separation and cross-modal speaker embeddings from unlabeled video.
It yields state-of-the-art results on five benchmark datasets for audio-visual speech separation and enhancement.
arXiv Detail & Related papers (2021-01-08T18:25:24Z) - Learning Representations from Audio-Visual Spatial Alignment [76.29670751012198]
We introduce a novel self-supervised pretext task for learning representations from audio-visual content.
The advantages of the proposed pretext task are demonstrated on a variety of audio and visual downstream tasks.
arXiv Detail & Related papers (2020-11-03T16:20:04Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
We propose a method to learn self-supervised speech representations from the raw audio waveform.
We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio)
Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
arXiv Detail & Related papers (2020-07-08T14:07:06Z) - Deep Audio-Visual Learning: A Survey [53.487938108404244]
We divide the current audio-visual learning tasks into four different subfields.
We discuss state-of-the-art methods as well as the remaining challenges of each subfield.
We summarize the commonly used datasets and performance metrics.
arXiv Detail & Related papers (2020-01-14T13:11:21Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
We propose a framework for learning audio representations guided by the visual modality in the context of audiovisual speech.
We employ a generative audio-to-video training scheme in which we animate a still image corresponding to a given audio clip and optimize the generated video to be as close as possible to the real video of the speech segment.
We achieve state of the art results for emotion recognition and competitive results for speech recognition.
arXiv Detail & Related papers (2020-01-13T14:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.