論文の概要: Instance-Aware Domain Generalization for Face Anti-Spoofing
- arxiv url: http://arxiv.org/abs/2304.05640v1
- Date: Wed, 12 Apr 2023 06:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 15:59:07.030211
- Title: Instance-Aware Domain Generalization for Face Anti-Spoofing
- Title(参考訳): Face Anti-Spoofingのためのインスタンス対応ドメイン一般化
- Authors: Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Xuequan Lu, Ran Yi, Shouhong
Ding, Lizhuang Ma
- Abstract要約: Face Anti-Spoofing (FAS) は、最近、目に見えないシナリオの一般化を改善するために研究されている。
従来の手法では、各ドメインの分布を整列してドメイン不変表現を学習するためにドメインラベルに依存していた。
ドメインラベルを必要とせずに、インスタンスレベルで機能を整列するDG FASの新しい視点を提案する。
- 参考スコア(独自算出の注目度): 42.36157210235893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face anti-spoofing (FAS) based on domain generalization (DG) has been
recently studied to improve the generalization on unseen scenarios. Previous
methods typically rely on domain labels to align the distribution of each
domain for learning domain-invariant representations. However, artificial
domain labels are coarse-grained and subjective, which cannot reflect real
domain distributions accurately. Besides, such domain-aware methods focus on
domain-level alignment, which is not fine-grained enough to ensure that learned
representations are insensitive to domain styles. To address these issues, we
propose a novel perspective for DG FAS that aligns features on the instance
level without the need for domain labels. Specifically, Instance-Aware Domain
Generalization framework is proposed to learn the generalizable feature by
weakening the features' sensitivity to instance-specific styles. Concretely, we
propose Asymmetric Instance Adaptive Whitening to adaptively eliminate the
style-sensitive feature correlation, boosting the generalization. Moreover,
Dynamic Kernel Generator and Categorical Style Assembly are proposed to first
extract the instance-specific features and then generate the style-diversified
features with large style shifts, respectively, further facilitating the
learning of style-insensitive features. Extensive experiments and analysis
demonstrate the superiority of our method over state-of-the-art competitors.
Code will be publicly available at https://github.com/qianyuzqy/IADG.
- Abstract(参考訳): ドメイン一般化(DG)に基づく対面アンチスプーフィング(FAS)は、最近、目に見えないシナリオの一般化を改善するために研究されている。
従来のメソッドはドメインラベルを使って各ドメインの分布を整列してドメイン不変表現を学習する。
しかし、人工ドメインラベルは粗大で主観的であり、実際のドメイン分布を正確に反映できない。
ドメインレベルのアライメントは、学習した表現がドメインスタイルに無関心であることを保証するのに十分な粒度ではない。
これらの問題に対処するために、ドメインラベルを必要とせずに、インスタンスレベルで機能を整列するDG FASの新しい視点を提案する。
特に、インスタンス対応ドメイン一般化フレームワークは、インスタンス固有のスタイルに対する機能の感度を弱めることで、一般化可能な機能を学ぶために提案されている。
具体的には,Asymmetric Instance Adaptive Whiteningを提案し,特徴相関を適応的に排除し,一般化を促進する。
さらに、まずインスタンス固有の特徴を抽出し、その後にスタイルシフトの大きなスタイル拡張特徴を生成し、さらにスタイルに敏感な特徴の学習を促進するために、動的カーネルジェネレータとカテゴリスタイルアセンブリを提案する。
広範な実験と分析により,本手法が最先端の競争相手よりも優れていることが示された。
コードはhttps://github.com/qianyuzqy/IADG.comで公開される。
関連論文リスト
- Single Domain Dynamic Generalization for Iris Presentation Attack
Detection [41.126916126040655]
アイリスプレゼンテーションの一般化はドメイン内の設定では大きな成功を収めたが、目に見えないドメインでは容易に分解できる。
本稿では,ドメイン不変性とドメイン固有性を利用した単一ドメイン動的一般化(SDDG)フレームワークを提案する。
提案手法は有効であり,LivDet-Iris 2017データセットの最先端性を上回っている。
論文 参考訳(メタデータ) (2023-05-22T07:54:13Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
ドメインの一般化は、ドメイン固有の特徴を抑えながら、ドメイン不変の機能の学習を促進することを目的としている。
オブジェクト検出のためのドメイン一般化手法を提案し, オブジェクト検出アーキテクチャに適用可能な最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-10T11:14:18Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
教師なしのドメイン適応に関するほとんどの研究は、各ドメインのトレーニングサンプルがドメインラベルを伴っていると仮定している。
適応的な畳み込みカーネルを持つ動的ニューラルネットワークを開発し、各インスタンスにドメインに依存しない深い特徴を適応させるために、インスタンス適応残差を生成する。
我々のモデルはDIDA-Netと呼ばれ、複数の一般的な単一ソースおよび複数ソースのUDAデータセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-09T20:05:54Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
ドメイン一般化(Domain Generalization, DG)は、観測されていないターゲットドメインで正常に動作するために、複数の観測されたソースドメインからモデルをトレーニングすることを目的としている。
以前のDGアプローチでは、ターゲットドメインを一般化するために、ソース間でのドメイン不変情報を抽出することに重点を置いていた。
本稿ではメタドメイン固有ドメイン不変量(mD)を提案する。
論文 参考訳(メタデータ) (2021-10-18T15:42:39Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
本稿では,異なる領域からの画像を投影することで,ドメインに依存しない遅延埋め込みを学習する手法を提案する。
挑戦的なDomainNetとDomainNet-LSベンチマークの実験は、既存のメソッドよりもアプローチの方が優れていることを示している。
論文 参考訳(メタデータ) (2021-07-12T17:57:46Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
ドメインフリードメイン一般化(DFDG)は、目に見えないテストドメインでより良い一般化性能を実現するモデル非依存の方法である。
DFDGは新しい戦略を用いてドメイン不変なクラス差別的特徴を学習する。
時系列センサと画像分類公開データセットの両方で競合性能を得る。
論文 参考訳(メタデータ) (2021-02-17T17:46:06Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
ドメイン内および外部の一般化性能を改善するモデルである一般化のためのドメイン固有マスクを紹介する。
ドメインの一般化のために、ゴールはソースドメインの集合から学び、見えないターゲットドメインに最もよく一般化する単一のモデルを作成することである。
本研究では,PACSとDomainNetの両面において,単純なベースラインと最先端の手法と比較して,競争力のある性能を示す。
論文 参考訳(メタデータ) (2020-08-28T20:39:51Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。