Instance-Aware Domain Generalization for Face Anti-Spoofing
- URL: http://arxiv.org/abs/2304.05640v1
- Date: Wed, 12 Apr 2023 06:41:16 GMT
- Title: Instance-Aware Domain Generalization for Face Anti-Spoofing
- Authors: Qianyu Zhou, Ke-Yue Zhang, Taiping Yao, Xuequan Lu, Ran Yi, Shouhong
Ding, Lizhuang Ma
- Abstract summary: Face anti-spoofing (FAS) has been recently studied to improve the generalization on unseen scenarios.
Previous methods rely on domain labels to align the distribution of each domain for learning domain-invariant representations.
We propose a novel perspective for DG FAS that aligns features on the instance level without the need for domain labels.
- Score: 42.36157210235893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face anti-spoofing (FAS) based on domain generalization (DG) has been
recently studied to improve the generalization on unseen scenarios. Previous
methods typically rely on domain labels to align the distribution of each
domain for learning domain-invariant representations. However, artificial
domain labels are coarse-grained and subjective, which cannot reflect real
domain distributions accurately. Besides, such domain-aware methods focus on
domain-level alignment, which is not fine-grained enough to ensure that learned
representations are insensitive to domain styles. To address these issues, we
propose a novel perspective for DG FAS that aligns features on the instance
level without the need for domain labels. Specifically, Instance-Aware Domain
Generalization framework is proposed to learn the generalizable feature by
weakening the features' sensitivity to instance-specific styles. Concretely, we
propose Asymmetric Instance Adaptive Whitening to adaptively eliminate the
style-sensitive feature correlation, boosting the generalization. Moreover,
Dynamic Kernel Generator and Categorical Style Assembly are proposed to first
extract the instance-specific features and then generate the style-diversified
features with large style shifts, respectively, further facilitating the
learning of style-insensitive features. Extensive experiments and analysis
demonstrate the superiority of our method over state-of-the-art competitors.
Code will be publicly available at https://github.com/qianyuzqy/IADG.
Related papers
- Single Domain Dynamic Generalization for Iris Presentation Attack
Detection [41.126916126040655]
Iris presentation generalization has achieved great success under intra-domain settings but easily degrades on unseen domains.
We propose a Single Domain Dynamic Generalization (SDDG) framework, which exploits domain-invariant and domain-specific features on a per-sample basis.
The proposed method is effective and outperforms the state-of-the-art on LivDet-Iris 2017 dataset.
arXiv Detail & Related papers (2023-05-22T07:54:13Z) - Domain Generalisation for Object Detection under Covariate and Concept Shift [10.32461766065764]
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features.
An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture.
arXiv Detail & Related papers (2022-03-10T11:14:18Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains.
Prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains.
We propose meta-Domain Specific-Domain Invariant (mD) - a novel theoretically sound framework.
arXiv Detail & Related papers (2021-10-18T15:42:39Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
We propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains.
Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-07-12T17:57:46Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
We introduce Domain-specific Masks for Generalization, a model for improving both in-domain and out-of-domain generalization performance.
For domain generalization, the goal is to learn from a set of source domains to produce a single model that will best generalize to an unseen target domain.
We demonstrate competitive performance compared to naive baselines and state-of-the-art methods on both PACS and DomainNet.
arXiv Detail & Related papers (2020-08-28T20:39:51Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.