Segment Anything Is Not Always Perfect: An Investigation of SAM on
Different Real-world Applications
- URL: http://arxiv.org/abs/2304.05750v3
- Date: Mon, 22 May 2023 06:22:40 GMT
- Title: Segment Anything Is Not Always Perfect: An Investigation of SAM on
Different Real-world Applications
- Authors: Wei Ji, Jingjing Li, Qi Bi, Tingwei Liu, Wenbo Li, Li Cheng
- Abstract summary: Recently, Meta AI Research approaches a general, promptable Segment Anything Model (SAM) pre-trained on an unprecedentedly large segmentation dataset (SA-1B)
We conduct a series of intriguing investigations into the performance of SAM across various applications, particularly in the fields of natural images, agriculture, manufacturing, remote sensing, and healthcare.
- Score: 31.31905890353516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Meta AI Research approaches a general, promptable Segment Anything
Model (SAM) pre-trained on an unprecedentedly large segmentation dataset
(SA-1B). Without a doubt, the emergence of SAM will yield significant benefits
for a wide array of practical image segmentation applications. In this study,
we conduct a series of intriguing investigations into the performance of SAM
across various applications, particularly in the fields of natural images,
agriculture, manufacturing, remote sensing, and healthcare. We analyze and
discuss the benefits and limitations of SAM, while also presenting an outlook
on its future development in segmentation tasks. By doing so, we aim to give a
comprehensive understanding of SAM's practical applications. This work is
expected to provide insights that facilitate future research activities toward
generic segmentation. Source code is publicly available.
Related papers
- On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications.
To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy.
This survey provides the first comprehensive review of these efficient SAM variants.
arXiv Detail & Related papers (2024-10-07T11:59:54Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - Segment Anything for Videos: A Systematic Survey [52.28931543292431]
The recent wave of foundation models has witnessed tremendous success in computer vision (CV) and beyond.
The segment anything model (SAM) has sparked a passion for exploring task-agnostic visual foundation models.
This work conducts a systematic review on SAM for videos in the era of foundation models.
arXiv Detail & Related papers (2024-07-31T02:24:53Z) - Moving Object Segmentation: All You Need Is SAM (and Flow) [82.78026782967959]
We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects.
In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt.
These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks.
arXiv Detail & Related papers (2024-04-18T17:59:53Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM) has emerged as a new paradigmatic vision foundation model.
Despite SAM finding applications and adaptations in various domains, its primary limitation lies in the inability to grasp object semantics.
We present Sambor to seamlessly integrate SAM with the open-vocabulary object detector in an end-to-end framework.
arXiv Detail & Related papers (2023-12-06T17:19:00Z) - A Comprehensive Survey on Segment Anything Model for Vision and Beyond [7.920790211915402]
It is urgent to design a general class of models, which we term foundation models, trained on broad data.
The recently proposed segment anything model (SAM) has made significant progress in breaking the boundaries of segmentation.
This paper introduces the background and terminology for foundation models including SAM, as well as state-of-the-art methods contemporaneous with SAM.
arXiv Detail & Related papers (2023-05-14T16:23:22Z) - A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering [49.732628643634975]
The Segment Anything Model (SAM), developed by Meta AI Research, offers a robust framework for image and video segmentation.
This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding.
arXiv Detail & Related papers (2023-05-12T07:21:59Z) - An Alternative to WSSS? An Empirical Study of the Segment Anything Model
(SAM) on Weakly-Supervised Semantic Segmentation Problems [35.547433613976104]
The Segment Anything Model (SAM) has demonstrated exceptional performance and versatility.
This report explores the application of SAM in Weakly-Supervised Semantic (WSSS)
We adapt SAM as the pseudo-label generation pipeline given only the image-level class labels.
arXiv Detail & Related papers (2023-05-02T16:35:19Z) - Segment anything, from space? [8.126645790463266]
"Segment Anything Model" (SAM) can segment objects in input imagery based on cheap input prompts.
SAM usually achieved recognition accuracy similar to, or sometimes exceeding, vision models that had been trained on the target tasks.
We examine whether SAM's performance extends to overhead imagery problems and help guide the community's response to its development.
arXiv Detail & Related papers (2023-04-25T17:14:36Z) - SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in
Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and
More [13.047310918166762]
We propose textbfSAM-Adapter, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters.
We can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection.
arXiv Detail & Related papers (2023-04-18T17:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.