A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering
- URL: http://arxiv.org/abs/2306.06211v4
- Date: Sat, 19 Oct 2024 13:37:59 GMT
- Title: A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering
- Authors: Chaoning Zhang, Joseph Cho, Fachrina Dewi Puspitasari, Sheng Zheng, Chenghao Li, Yu Qiao, Taegoo Kang, Xinru Shan, Chenshuang Zhang, Caiyan Qin, Francois Rameau, Lik-Hang Lee, Sung-Ho Bae, Choong Seon Hong,
- Abstract summary: The Segment Anything Model (SAM), developed by Meta AI Research, offers a robust framework for image and video segmentation.
This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding.
- Score: 49.732628643634975
- License:
- Abstract: The Segment Anything Model (SAM), developed by Meta AI Research, represents a significant breakthrough in computer vision, offering a robust framework for image and video segmentation. This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding. Our study demonstrates SAM's versatility across a wide range of applications while identifying areas where improvements are needed, particularly in scenarios requiring high granularity and in the absence of explicit prompts. By mapping the evolution and capabilities of SAM models, we offer insights into their strengths and limitations and suggest future research directions, including domain-specific adaptations and enhanced memory and propagation mechanisms. We believe that this survey comprehensively covers the breadth of SAM's applications and challenges, setting the stage for ongoing advancements in segmentation technology.
Related papers
- On Efficient Variants of Segment Anything Model: A Survey [63.127753705046]
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications.
To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy.
This survey provides the first comprehensive review of these efficient SAM variants.
arXiv Detail & Related papers (2024-10-07T11:59:54Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - Segment Anything for Videos: A Systematic Survey [52.28931543292431]
The recent wave of foundation models has witnessed tremendous success in computer vision (CV) and beyond.
The segment anything model (SAM) has sparked a passion for exploring task-agnostic visual foundation models.
This work conducts a systematic review on SAM for videos in the era of foundation models.
arXiv Detail & Related papers (2024-07-31T02:24:53Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM) has demonstrated its impressive generalization capabilities in open-world scenarios with the guidance of prompts.
We propose a novel framework, termed AlignSAM, designed for automatic prompting for aligning SAM to an open context.
arXiv Detail & Related papers (2024-06-01T16:21:39Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM) has emerged as a new paradigmatic vision foundation model.
Despite SAM finding applications and adaptations in various domains, its primary limitation lies in the inability to grasp object semantics.
We present Sambor to seamlessly integrate SAM with the open-vocabulary object detector in an end-to-end framework.
arXiv Detail & Related papers (2023-12-06T17:19:00Z) - A Comprehensive Survey on Segment Anything Model for Vision and Beyond [7.920790211915402]
It is urgent to design a general class of models, which we term foundation models, trained on broad data.
The recently proposed segment anything model (SAM) has made significant progress in breaking the boundaries of segmentation.
This paper introduces the background and terminology for foundation models including SAM, as well as state-of-the-art methods contemporaneous with SAM.
arXiv Detail & Related papers (2023-05-14T16:23:22Z) - Segment Anything Is Not Always Perfect: An Investigation of SAM on
Different Real-world Applications [31.31905890353516]
Recently, Meta AI Research approaches a general, promptable Segment Anything Model (SAM) pre-trained on an unprecedentedly large segmentation dataset (SA-1B)
We conduct a series of intriguing investigations into the performance of SAM across various applications, particularly in the fields of natural images, agriculture, manufacturing, remote sensing, and healthcare.
arXiv Detail & Related papers (2023-04-12T10:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.