論文の概要: HaDR: Applying Domain Randomization for Generating Synthetic Multimodal
Dataset for Hand Instance Segmentation in Cluttered Industrial Environments
- arxiv url: http://arxiv.org/abs/2304.05826v1
- Date: Wed, 12 Apr 2023 13:02:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 15:01:07.796529
- Title: HaDR: Applying Domain Randomization for Generating Synthetic Multimodal
Dataset for Hand Instance Segmentation in Cluttered Industrial Environments
- Title(参考訳): HaDR: クラッタ産業環境におけるハンドインスタンス分割のための合成マルチモーダルデータセット生成のためのドメインランダム化の適用
- Authors: Stefan Grushko, Ale\v{s} Vysock\'y, Jakub Chlebek, Petr Prokop
- Abstract要約: 本研究では、ドメインランダム化を用いて、マルチモーダルインスタンスセグメンテーションモデルのトレーニングのための合成RGB-Dデータセットを生成する。
提案手法により,既存の最先端データセットでトレーニングしたモデルよりも優れた性能が得られることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study uses domain randomization to generate a synthetic RGB-D dataset
for training multimodal instance segmentation models, aiming to achieve
colour-agnostic hand localization in cluttered industrial environments. Domain
randomization is a simple technique for addressing the "reality gap" by
randomly rendering unrealistic features in a simulation scene to force the
neural network to learn essential domain features. We provide a new synthetic
dataset for various hand detection applications in industrial environments, as
well as ready-to-use pretrained instance segmentation models. To achieve robust
results in a complex unstructured environment, we use multimodal input that
includes both colour and depth information, which we hypothesize helps to
improve the accuracy of the model prediction. In order to test this assumption,
we analyze the influence of each modality and their synergy. The evaluated
models were trained solely on our synthetic dataset; yet we show that our
approach enables the models to outperform corresponding models trained on
existing state-of-the-art datasets in terms of Average Precision and
Probability-based Detection Quality.
- Abstract(参考訳): 本研究では,マルチモーダルインスタンスセグメンテーションモデルを学習するための合成RGB-Dデータセットを生成するために,ドメインランダム化を用いる。
ドメインランダム化(Domain randomization)は、シミュレーションシーンで非現実的な特徴をランダムにレンダリングしてニューラルネットワークに必須のドメイン特徴を学習させ、"現実のギャップ"に対処するシンプルなテクニックである。
産業環境における様々な手検出アプリケーションのための新しい合成データセットと、事前訓練済みのインスタンスセグメンテーションモデルを提供する。
複雑な非構造環境におけるロバストな結果を達成するために,色情報と深度情報の両方を含むマルチモーダル入力を用いて,モデル予測の精度を向上させる。
この仮定をテストするために,各モダリティとその相乗効果の影響を分析する。
評価されたモデルは、我々の合成データセットのみに基づいてトレーニングされましたが、我々のアプローチは、平均精度と確率ベースの検出品質の観点から、既存の最先端データセットでトレーニングされた対応するモデルよりも優れています。
関連論文リスト
- Hybrid Training Approaches for LLMs: Leveraging Real and Synthetic Data to Enhance Model Performance in Domain-Specific Applications [0.0]
本研究では,超微調整型大規模言語モデル(LLM)のハイブリッドアプローチについて検討する。
転写された実データと高品質な合成セッションを組み合わせたデータセットを利用することで、ドメイン固有の実データの制限を克服することを目的とした。
本研究は,基本基礎モデル,実データで微調整されたモデル,ハイブリッド微調整されたモデルという3つのモデルを評価した。
論文 参考訳(メタデータ) (2024-10-11T18:16:03Z) - Investigation of the Impact of Synthetic Training Data in the Industrial
Application of Terminal Strip Object Detection [4.327763441385371]
本稿では,端末ストリップ物体検出の複雑な産業応用における標準対象検出器のシム・トゥ・リアル一般化性能について検討する。
評価のために300個の実画像に手動でアノテートを行った結果,どちらの領域でも同じ規模の興味の対象が重要であることがわかった。
論文 参考訳(メタデータ) (2024-03-06T18:33:27Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
近年、下流のタスクで大規模なデータで事前訓練された微調整大型モデルが成功し、ディープラーニングにおける重要なパラダイムシフトにつながった。
本稿では,合成データを用いて事前学習した表現の質を測定するためのタスク非依存フレームワークであるtextitSynBenchを提案する。
論文 参考訳(メタデータ) (2022-10-06T15:25:00Z) - Neural-Sim: Learning to Generate Training Data with NeRF [31.81496344354997]
本稿では,ニューラルレージアンスフィールド(NeRF)を対象アプリケーションの損失関数を持つ閉ループに使用した,最初の完全微分可能な合成データパイプラインを提案する。
提案手法は,人的負担を伴わないオンデマンドでデータを生成し,目標タスクの精度を最大化する。
論文 参考訳(メタデータ) (2022-07-22T22:48:33Z) - Style-Hallucinated Dual Consistency Learning for Domain Generalized
Semantic Segmentation [117.3856882511919]
本稿では、ドメインシフトを処理するためのStyle-HAllucinated Dual consistEncy Learning(SHADE)フレームワークを提案する。
SHADEは3つの実世界のデータセットの平均mIoUに対して5.07%と8.35%の精度で改善し、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-04-06T02:49:06Z) - Style-transfer GANs for bridging the domain gap in synthetic pose
estimator training [8.508403388002133]
画素レベルの画像変換に汎用的なGANモデルを採用することを提案する。
得られたモデルは、トレーニング中または推論時に、ドメインギャップをブリッジするために使用される。
ドメインランダム化の程度で訓練されたモデルと比較すると,モデルの性能は大幅に向上した。
論文 参考訳(メタデータ) (2020-04-28T17:35:03Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。