Measurement-based quantum Otto engine with a two-spin system coupled by
anisotropic interaction: enhanced efficiency at finite times
- URL: http://arxiv.org/abs/2304.05877v1
- Date: Wed, 12 Apr 2023 14:18:40 GMT
- Title: Measurement-based quantum Otto engine with a two-spin system coupled by
anisotropic interaction: enhanced efficiency at finite times
- Authors: Chayan Purkait, Asoka Biswas
- Abstract summary: We have studied the performance of a measurement-based quantum Otto engine (QOE) in a working system of two spins coupled by Heisenberg anisotropic interaction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have studied the performance of a measurement-based quantum Otto engine
(QOE) in a working system of two spins coupled by Heisenberg anisotropic
interaction. A non-selective quantum measurement fuels the engine. We have
calculated thermodynamic quantities of the cycle in terms of the transition
probabilities between the instantaneous energy eigenstates, and also between
the instantaneous energy eigenstates and the basis states of the measurement,
when the unitary stages of the cycle operate for a finite time $\tau$. The
efficiency attains a large value in the limit of $\tau \rightarrow 0$ and then
gradually reaches the adiabatic value in a long time limit $\tau \rightarrow
\infty$. For finite values of $\tau$ and for anisotropic interaction, an
oscillatory behaviour of the efficiency of the engine is observed. This
oscillation can be interpreted in terms of interference between the relevant
transition amplitudes in the unitary stages of the engine cycle. Therefore, for
a suitable choice of timing of the unitary processes in the short time regime,
the engine can have a higher work output and less heat absorption, such that it
works more efficiently than a quasi-static engine. In the case of an always-on
heat bath, in a very short time the bath has a negligible effect on its
performance.
Related papers
- A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases [0.0]
We study a finite-time quantum Otto engine cycle driven by inter-particle interactions in a weakly interacting Bose gas.
We find that, unlike a uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely as a emphheat engine.
arXiv Detail & Related papers (2024-04-25T09:54:21Z) - Advantages of non-Hookean coupling in a measurement-fueled
two-oscillator engine [65.268245109828]
A quantum engine composed of two oscillators with a non-Hookean coupling is proposed.
Unlike the more common quantum heat engines, the setup introduced here does not require heat baths as the energy for the operation originates from measurements.
Numerical simulations are used to demonstrate the measurement-driven fueling, as well as the reduced decoupling energy.
arXiv Detail & Related papers (2023-11-08T04:09:26Z) - Anisotropy-assisted thermodynamic advantage of a local-spin thermal
machine [0.0]
We study quantum Otto thermal machines with a two-spin working system coupled by anisotropic interaction.
We show that the efficiency of such an engine can surpass the standard quantum Otto limit, along with maximum power, thanks to the anisotropy.
arXiv Detail & Related papers (2023-09-09T11:05:28Z) - A quantum Stirling heat engine operating in finite time [0.0]
We analyze the thermodynamics of a quantum Stirling engine operating in finite time.
In the limit of slow operation of the cycle and low temperature, the efficiency of such an engine approaches Carnot efficiency.
arXiv Detail & Related papers (2023-07-24T18:30:59Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Powerful ordered collective heat engines [58.720142291102135]
We introduce a class of engines in which the regime of units operating synchronously can boost the performance.
We show that the interplay between Ising-like interactions and a collective ordered regime is crucial to operate as a heat engine.
arXiv Detail & Related papers (2023-01-16T20:14:19Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Maximal power for heat engines: role of asymmetric interaction times [110.83289076967895]
We introduce the idea of adjusting the interaction time asymmetry in order to optimize the engine performance.
Distinct optimization protocols are analyzed in the framework of thermodynamics.
arXiv Detail & Related papers (2020-12-16T22:26:14Z) - Finite-time quantum Stirling heat engine [0.0]
We study the thermodynamic performance of the finite-time non-regenerative Stirling cycle used as a quantum heat engine.
We find that the finite-time dynamics and thermodynamics of the cycle depend non-trivially on the different time scales at play.
arXiv Detail & Related papers (2020-09-21T17:19:14Z) - Non-Markovian effect on quantum Otto engine: -Role of system--reservoir
interaction- [0.0]
We study a limit cycle of a quantum Otto engine whose each cycle consists of two finite-time quantum isochoric processes.
We investigate the non-Markovian effect (short-time behavior of the reduced dynamics in the quantum isochoric processes) on work extraction after infinite repetition of the cycles.
arXiv Detail & Related papers (2020-06-24T10:01:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.