論文の概要: Confident Object Detection via Conformal Prediction and Conformal Risk
Control: an Application to Railway Signaling
- arxiv url: http://arxiv.org/abs/2304.06052v2
- Date: Mon, 17 Apr 2023 08:13:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 20:00:11.589086
- Title: Confident Object Detection via Conformal Prediction and Conformal Risk
Control: an Application to Railway Signaling
- Title(参考訳): コンフォーマル予測とコンフォーマルリスク制御による信頼度物体検出:鉄道信号への応用
- Authors: L\'eo and\'eol (IMT, ANITI), Thomas Fel, Florence De Grancey, Luca
Mossina
- Abstract要約: 鉄道信号検出のための信頼性予測器構築のための共形予測手法を実証する。
我々のアプローチは、列車オペレーターと最先端のオブジェクト検出器の観点から撮影された画像を含む、新しいデータセットに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep learning models in real-world certified systems requires the
ability to provide confidence estimates that accurately reflect their
uncertainty. In this paper, we demonstrate the use of the conformal prediction
framework to construct reliable and trustworthy predictors for detecting
railway signals. Our approach is based on a novel dataset that includes images
taken from the perspective of a train operator and state-of-the-art object
detectors. We test several conformal approaches and introduce a new method
based on conformal risk control. Our findings demonstrate the potential of the
conformal prediction framework to evaluate model performance and provide
practical guidance for achieving formally guaranteed uncertainty bounds.
- Abstract(参考訳): 現実世界の認定システムへのディープラーニングモデルのデプロイには、不確実性を正確に反映する信頼性評価機能が必要である。
本稿では,鉄道信号検出のための信頼度の高い予測器を構築するための共形予測フレームワークについて述べる。
我々のアプローチは、列車オペレーターと最先端のオブジェクト検出器の観点から撮影された画像を含む、新しいデータセットに基づいている。
いくつかの共形アプローチをテストし,共形リスク制御に基づく新しい手法を提案する。
本研究は,モデル性能を評価するための共形予測フレームワークの可能性を示し,正式に保証された不確実性境界を達成するための実践的ガイダンスを提供する。
関連論文リスト
- Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
本稿では,分類モデルに適したランクベーススコア関数を用いた新しいコンフォメーション予測手法を提案する。
提案手法は,そのサイズを管理しながら,所望のカバレッジ率を達成する予測セットを構築する。
コントリビューションには、新しい共形予測法、理論的解析、経験的評価が含まれる。
論文 参考訳(メタデータ) (2024-07-05T10:43:41Z) - Onboard Out-of-Calibration Detection of Deep Learning Models using Conformal Prediction [4.856998175951948]
本研究では,共形予測アルゴリズムが深層学習モデルの不確かさと関係があることを示し,この関係が深層学習モデルが校正外であるかどうかを検出するのに有効であることを示す。
モデル不確かさと共形予測セットの平均サイズに関連する校正外検出手順を示す。
論文 参考訳(メタデータ) (2024-05-04T11:05:52Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Forking Uncertainties: Reliable Prediction and Model Predictive Control
with Sequence Models via Conformal Risk Control [40.918012779935246]
本稿では,事前設計した確率予測器が生成した予測に基づいて,信頼性の高いエラーバーを生成する,新しいポストホックキャリブレーション手法を提案する。
最先端技術とは異なり、PTS-CRCはカバレッジ以上の信頼性定義を満たすことができる。
PTS-CRC予測と制御の性能を,無線ネットワークの文脈における多くのユースケースの研究により実験的に検証した。
論文 参考訳(メタデータ) (2023-10-16T11:35:41Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Conformal Prediction for Trustworthy Detection of Railway Signals [0.0]
本稿では,鉄道信号の検出に対する不確実性定量化の一形態である共形予測の適用について述べる。
我々は,列車運行者の視点から得られた画像の探索的データセットについて研究する。
論文 参考訳(メタデータ) (2023-01-26T14:40:49Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。