論文の概要: Utilizing the International Classification of Functioning, Disability
and Health (ICF) in forming a personal health index
- arxiv url: http://arxiv.org/abs/2304.06143v1
- Date: Thu, 30 Mar 2023 12:33:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-16 21:57:47.408709
- Title: Utilizing the International Classification of Functioning, Disability
and Health (ICF) in forming a personal health index
- Title(参考訳): 個人の健康指標形成における国際機能・障害・健康分類(ICF)の利用
- Authors: Ilkka Rautiainen, Lauri Parviainen, Veera Jakoaho, Sami \"Ayr\"am\"o
and Jukka-Pekka Kauppi
- Abstract要約: このモデルは、異なる手法を用いて収集された不完全で不均一なデータセットを扱うことができる。
健康指標は、リハビリテーション中の個人が提供した2つの自己評価健康対策と比較して検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a new model for comprehensively monitoring the health status of
individuals by calculating a personal health index. The central framework of
the model is the International Classification of Functioning, Disability and
Health (ICF) developed by the World Health Organization. The model is capable
of handling incomplete and heterogeneous data sets collected using different
techniques. The health index was validated by comparing it to two self-assessed
health measures provided by individuals undergoing rehabilitation. Results
indicate that the model yields valid health index outcomes, suggesting that the
proposed model is applicable in practice.
- Abstract(参考訳): 個人の健康指標を算出し,個人の健康状態を包括的にモニタリングする新しいモデルを提案する。
モデルの中心的な枠組みは、世界保健機関によって開発された国際機能、障害、健康の分類(ICF)である。
このモデルは、異なる手法で収集された不完全で異種なデータセットを処理することができる。
健康指標は、リハビリテーション中の個人が提供した2つの自己評価健康対策と比較して検証した。
その結果,本モデルが有効な健康指標結果をもたらし,提案モデルが実際に適用可能であることが示唆された。
関連論文リスト
- Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Connecting Fairness in Machine Learning with Public Health Equity [0.0]
データとモデル設計のバイアスは、特定の保護されたグループの格差をもたらし、医療における既存の不平等を増幅します。
本研究は,MLフェアネスに関する基礎文献を要約し,データとモデルのバイアスを特定し緩和するための枠組みを提案する。
ケーススタディは、このフレームワークがこれらのバイアスを防ぎ、公衆衛生における公平で公平なMLモデルの必要性を強調するためにどのように使用できるかを示している。
論文 参考訳(メタデータ) (2023-04-08T10:21:49Z) - BOSS: Bones, Organs and Skin Shape Model [10.50175010474078]
我々は,CT画像から学習した皮膚,内臓,骨を結合した変形可能な人体形状とポーズモデルを提案する。
確率的PCAを用いて、ポーズ正規化空間の統計的変動をモデル化することにより、本手法は身体の全体像を提供する。
論文 参考訳(メタデータ) (2023-03-08T22:31:24Z) - Systematic Design and Evaluation of Social Determinants of Health
Ontology (SDoHO) [19.90090257979115]
健康の社会的決定因子(SDoH)は、健康の結果と幸福に重大な影響を及ぼす。
本稿では,SDoH の基本的な因子とその関係を標準化し,測定可能な方法で表現する SDoH オントロジー (SDoHO) を提案する。
論文 参考訳(メタデータ) (2022-12-04T22:23:30Z) - PiRL: Participant-Invariant Representation Learning for Healthcare [14.986449254864572]
参加者不変表現を学習する表現学習フレームワークPiRLを提案する。
予備的な結果として,提案手法はベースラインに比べて5%ほど精度が向上していることがわかった。
論文 参考訳(メタデータ) (2022-11-21T18:16:49Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - An Urban Population Health Observatory System to Support COVID-19
Pandemic Preparedness, Response, and Management: Design and Development Study [0.8602553195689513]
本研究は、新型コロナウイルスのパンデミックに対応するため、健康者2030 SDoHの分類を再定義することを試みた。
我々は,グループレベルのSDoH指標を個別および集団レベルの人口健康データに統合するWebプラットフォームであるUrban Population Health Observatory(UPHO)のプロトタイプの実装を目指している。
論文 参考訳(メタデータ) (2021-06-16T16:48:55Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
我々は、広く使われている最先端のSSMツールの結果を体系的に評価する。
解剖学的ランドマーク/計測推測および病変スクリーニングのための検証フレームワークを提案する。
ShapeWorks と Deformetrica の形状モデルは臨床的に関連する集団レベルの変動を捉えている。
論文 参考訳(メタデータ) (2020-09-07T03:51:35Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。