論文の概要: MProtoNet: A Case-Based Interpretable Model for Brain Tumor
Classification with 3D Multi-parametric Magnetic Resonance Imaging
- arxiv url: http://arxiv.org/abs/2304.06258v1
- Date: Thu, 13 Apr 2023 04:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 15:41:34.401781
- Title: MProtoNet: A Case-Based Interpretable Model for Brain Tumor
Classification with 3D Multi-parametric Magnetic Resonance Imaging
- Title(参考訳): mprotonet : 3次元マルチパラメトリックmriを用いた脳腫瘍分類のためのケースベース解釈モデル
- Authors: Yuanyuan Wei, Roger Tam, Xiaoying Tang
- Abstract要約: 本稿では,3D Multi-parametric magnetic resonance imaging (mpMRI)データを用いて,ProtoPNetを脳腫瘍分類に拡張する最初の医用プロトタイプネットワーク(MProtoNet)を提案する。
MProtoNetは、正確性とローカライゼーションコヒーレンスの両方の解釈可能性指標の統計的に有意な改善を実現している。
- 参考スコア(独自算出の注目度): 0.6445605125467573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent applications of deep convolutional neural networks in medical imaging
raise concerns about their interpretability. While most explainable deep
learning applications use post hoc methods (such as GradCAM) to generate
feature attribution maps, there is a new type of case-based reasoning models,
namely ProtoPNet and its variants, which identify prototypes during training
and compare input image patches with those prototypes. We propose the first
medical prototype network (MProtoNet) to extend ProtoPNet to brain tumor
classification with 3D multi-parametric magnetic resonance imaging (mpMRI)
data. To address different requirements between 2D natural images and 3D mpMRIs
especially in terms of localizing attention regions, a new attention module
with soft masking and online-CAM loss is introduced. Soft masking helps sharpen
attention maps, while online-CAM loss directly utilizes image-level labels when
training the attention module. MProtoNet achieves statistically significant
improvements in interpretability metrics of both correctness and localization
coherence (with a best activation precision of $0.713\pm0.058$) without
human-annotated labels during training, when compared with GradCAM and several
ProtoPNet variants. The source code is available at
https://github.com/aywi/mprotonet.
- Abstract(参考訳): 最近の深層畳み込みニューラルネットワークの医療画像への応用は、その解釈可能性に懸念を生じさせている。
ほとんどの説明可能なディープラーニングアプリケーションは、機能帰属マップを生成するためにpost hocメソッド(gradcamなど)を使用しているが、新しいタイプのケースベースの推論モデル、すなわちprotopnetとその変種があり、トレーニング中にプロトタイプを特定し、入力イメージパッチとそれらのプロトタイプを比較する。
3次元マルチパラメトリック磁気共鳴画像(mpmri)データを用いて,protopnetを脳腫瘍分類に拡張した最初の医療プロトタイプネットワーク(mprotonet)を提案する。
特に注意領域の局所化における2次元自然画像と3D mpMRIの異なる要件に対処するために,ソフトマスクとオンラインCAMロスを備えた新しい注意モジュールを導入した。
ソフトマスクはアテンションマップのシャープ化に役立ち、オンラインCAMロスはアテンションモジュールのトレーニングに画像レベルのラベルを直接活用する。
MProtoNetは、GradCAMやいくつかのProtoPNetの変種と比較して、トレーニング中に人間のアノテートラベルなしで、正確性とローカライズコヒーレンスの両方の解釈可能性指標(最高のアクティベーション精度が0.713\pm0.058$)を統計的に大幅に改善した。
ソースコードはhttps://github.com/aywi/mprotonet。
関連論文リスト
- Efficient Slice Anomaly Detection Network for 3D Brain MRI Volume [2.3633885460047765]
現在の異常検出法は, 基準産業データより優れているが, 「正常」 と「異常」の定義の相違により, 医療データに苦慮している。
我々は,ImageNet上で事前学習し,MRIデータセットを2次元スライス特徴抽出器として微調整したモデルを用いたSimple Slice-based Network (SimpleSliceNet) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-28T17:20:56Z) - ToNNO: Tomographic Reconstruction of a Neural Network's Output for Weakly Supervised Segmentation of 3D Medical Images [6.035125735474387]
ToNNOは、ニューラルネットワークの出力のトモグラフィー再構成に基づいている。
入力された3Dボリュームから異なる角度のスライスを抽出し、これらのスライスを2Dエンコーダに供給し、エンコーダの予測の3Dヒートマップを再構成するために逆ラドン変換を適用する。
本研究では、2Dエンコーダを訓練し、関心領域を含むスライスに対して高い値を出力することにより、医用画像セグメンテーションの弱制御に適用する。
論文 参考訳(メタデータ) (2024-04-19T11:27:56Z) - MAProtoNet: A Multi-scale Attentive Interpretable Prototypical Part Network for 3D Magnetic Resonance Imaging Brain Tumor Classification [25.056170817680403]
そこで本稿では,MAProtoNet と呼ばれるマルチスケール適応型部分ネットワークを提案し,より正確な属性マップを提供する。
具体的には、四重項の注意層から注意的特徴をマージし、属性マップを生成するための簡潔なマルチスケールモジュールを提案する。
医療画像における既存の解釈可能な部分ネットワークと比較して、MAProtoNetはローカライゼーションにおける最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2024-04-13T07:30:17Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Transferring Models Trained on Natural Images to 3D MRI via Position
Encoded Slice Models [14.42534860640976]
2D-Slice-CNNアーキテクチャは、すべてのMRIスライスを2Dエンコーダに埋め込む。
トレーニング済みのモデルが2Dエンコーダとして機能できるという知見を得て、2DエンコーダをImageNetで初期化し、2つのニューロイメージングタスクでそれらを上回り、スクラッチからトレーニングする。
論文 参考訳(メタデータ) (2023-03-02T18:52:31Z) - Decomposing 3D Neuroimaging into 2+1D Processing for Schizophrenia
Recognition [25.80846093248797]
我々は2+1Dフレームワークで3Dデータを処理し、巨大なImageNetデータセット上に事前トレーニングされた強力な2D畳み込みニューラルネットワーク(CNN)ネットワークを利用して3Dニューロイメージング認識を実現することを提案する。
特に3次元磁気共鳴イメージング(MRI)の計測値は、隣接するボクセル位置に応じて2次元スライスに分解される。
グローバルプーリングは、アクティベーションパターンが機能マップ上にわずかに分散されているため、冗長な情報を除去するために適用される。
2次元CNNモデルにより処理されていない3次元の文脈情報を集約するために,チャネルワイドおよびスライスワイズ畳み込みを提案する。
論文 参考訳(メタデータ) (2022-11-21T15:22:59Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
生存時間(OS)の早期かつ正確な予測は、脳腫瘍患者に対するより良い治療計画を得るのに役立つ。
既存の予測手法は、磁気共鳴(MR)ボリュームの局所的な病変領域における放射能特性に依存している。
我々は,マルチモーダルマルチチャネルネットワーク(M2Net)のエンドツーエンドOS時間予測モデルを提案する。
論文 参考訳(メタデータ) (2020-06-01T05:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。