論文の概要: Attributed Multi-order Graph Convolutional Network for Heterogeneous
Graphs
- arxiv url: http://arxiv.org/abs/2304.06336v1
- Date: Thu, 13 Apr 2023 08:31:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 15:11:08.102323
- Title: Attributed Multi-order Graph Convolutional Network for Heterogeneous
Graphs
- Title(参考訳): ヘテロジニアスグラフのための多階グラフ畳み込みネットワーク
- Authors: Zhaoliang Chen, Zhihao Wu, Luying Zhong, Claudia Plant, Shiping Wang,
Wenzhong Guo
- Abstract要約: AMOGCN(AnAttributed Multi-Order Graph Convolutional Network)を提案する。
AMOGCNは最先端の競合に比べて優れた半教師付き分類性能を得る。
- 参考スコア(独自算出の注目度): 29.618952407794783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graph neural networks aim to discover discriminative node
embeddings and relations from multi-relational networks.One challenge of
heterogeneous graph learning is the design of learnable meta-paths, which
significantly influences the quality of learned embeddings.Thus, in this paper,
we propose an Attributed Multi-Order Graph Convolutional Network (AMOGCN),
which automatically studies meta-paths containing multi-hop neighbors from an
adaptive aggregation of multi-order adjacency matrices. The proposed model
first builds different orders of adjacency matrices from manually designed node
connections. After that, an intact multi-order adjacency matrix is attached
from the automatic fusion of various orders of adjacency matrices. This process
is supervised by the node semantic information, which is extracted from the
node homophily evaluated by attributes. Eventually, we utilize a one-layer
simplifying graph convolutional network with the learned multi-order adjacency
matrix, which is equivalent to the cross-hop node information propagation with
multi-layer graph neural networks. Substantial experiments reveal that AMOGCN
gains superior semi-supervised classification performance compared with
state-of-the-art competitors.
- Abstract(参考訳): Heterogeneous graph neural networks aim to discover discriminative node embeddings and relations from multi-relational networks.One challenge of heterogeneous graph learning is the design of learnable meta-paths, which significantly influences the quality of learned embeddings.Thus, in this paper, we propose an Attributed Multi-Order Graph Convolutional Network (AMOGCN), which automatically studies meta-paths containing multi-hop neighbors from an adaptive aggregation of multi-order adjacency matrices.
提案モデルではまず,手動で設計したノード接続から隣接行列の異なる順序で構築する。
その後、種々の隣接行列の自動融合から無傷の多階隣接行列が取り付けられる。
このプロセスは、属性によって評価されたノードから抽出されるノード意味情報によって監視される。
最終的には,多層グラフニューラルネットワークを用いたクロスホップノード情報伝搬に相当する,学習した多階隣接行列を用いたグラフ畳み込みネットワークを単純化する。
AMOGCNは最先端の競合製品に比べて優れた半教師付き分類性能を持つ。
関連論文リスト
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Multi-view Graph Convolutional Networks with Differentiable Node
Selection [29.575611350389444]
差別化可能なノード選択(MGCN-DNS)を備えた多視点グラフ畳み込みネットワーク(Multi-view Graph Convolutional Network)を提案する。
MGCN-DNSは、マルチチャネルグラフ構造データを入力として受け入れ、微分可能なニューラルネットワークを通じてより堅牢なグラフ融合を学ぶことを目的としている。
提案手法の有効性は,最先端手法と厳密な比較により検証した。
論文 参考訳(メタデータ) (2022-12-09T21:48:36Z) - Multiplex Heterogeneous Graph Convolutional Network [25.494590588212542]
異種ネットワーク埋め込みのための多重異種グラフ畳み込みネットワーク(MHGCN)を提案する。
我々のMHGCNは、多重異種ネットワークにおいて、異なる長さの有用な異種メタパス相互作用を自動的に学習することができる。
論文 参考訳(メタデータ) (2022-08-12T06:17:54Z) - Pay Attention to Relations: Multi-embeddings for Attributed Multiplex
Networks [0.0]
RAHMeNは、属性付き異種多重ネットワークのための新しい統合型関係認識組込みフレームワークである。
本モデルでは,ノード属性,モチーフに基づく特徴,関係性に基づくGCNアプローチ,ノードの埋め込みを学習するための関係性自己アテンションが組み込まれている。
我々は,Amazon,Twitter,YouTube,Tio PPIの4つの実世界のデータセットを,トランスダクティブおよびインダクティブの両方で評価した。
論文 参考訳(メタデータ) (2022-03-03T18:31:29Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Heterogeneous Graph Neural Network with Multi-view Representation
Learning [16.31723570596291]
異種グラフ埋め込みのための多視点表現学習(MV-HetGNN)を用いた異種グラフニューラルネットワークを提案する。
提案手法は, ノード特徴変換, ビュー固有エゴグラフ符号化, 自動多視点融合により, 包括的ノード表現を生成する複雑な構造情報と意味情報を完全に学習する。
3つの実世界の異種グラフデータセットに対する大規模な実験により、提案されたMV-HetGNNモデルは、様々な下流タスクにおいて、最先端のGNNベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2021-08-31T07:18:48Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。