論文の概要: Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression
- arxiv url: http://arxiv.org/abs/2304.06393v1
- Date: Thu, 13 Apr 2023 10:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 14:53:48.538200
- Title: Learning Accurate Performance Predictors for Ultrafast Automated Model
Compression
- Title(参考訳): 超高速モデル圧縮のための高精度性能予測器の学習
- Authors: Ziwei Wang, Jiwen Lu, Han Xiao, Shengyu Liu, Jie Zhou
- Abstract要約: フレキシブルネットワーク展開のための超高速自動モデル圧縮フレームワークSeerNetを提案する。
本手法は,探索コストを大幅に削減した競合精度・複雑度トレードオフを実現する。
- 参考スコア(独自算出の注目度): 86.22294249097203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an ultrafast automated model compression framework
called SeerNet for flexible network deployment. Conventional
non-differen-tiable methods discretely search the desirable compression policy
based on the accuracy from exhaustively trained lightweight models, and
existing differentiable methods optimize an extremely large supernet to obtain
the required compressed model for deployment. They both cause heavy
computational cost due to the complex compression policy search and evaluation
process. On the contrary, we obtain the optimal efficient networks by directly
optimizing the compression policy with an accurate performance predictor, where
the ultrafast automated model compression for various computational cost
constraint is achieved without complex compression policy search and
evaluation. Specifically, we first train the performance predictor based on the
accuracy from uncertain compression policies actively selected by efficient
evolutionary search, so that informative supervision is provided to learn the
accurate performance predictor with acceptable cost. Then we leverage the
gradient that maximizes the predicted performance under the barrier complexity
constraint for ultrafast acquisition of the desirable compression policy, where
adaptive update stepsizes with momentum are employed to enhance optimality of
the acquired pruning and quantization strategy. Compared with the
state-of-the-art automated model compression methods, experimental results on
image classification and object detection show that our method achieves
competitive accuracy-complexity trade-offs with significant reduction of the
search cost.
- Abstract(参考訳): 本稿では、フレキシブルネットワーク配置のための超高速自動モデル圧縮フレームワークSeerNetを提案する。
従来の非差分分割方式は、徹底的に訓練された軽量モデルからの精度に基づいて望ましい圧縮ポリシーを離散的に探索し、既存の微分可能な手法は、非常に大きなスーパーネットを最適化し、デプロイに必要な圧縮モデルを得る。
両者とも複雑な圧縮ポリシー探索と評価プロセスのために計算コストが重い。
一方,計算コスト制約に対する超高速自動モデル圧縮を複雑な圧縮ポリシ探索と評価なしで実現し,精度の高い性能予測器で圧縮ポリシを直接最適化することにより,最適なネットワークを得る。
具体的には,効率的な進化探索によって選択された不確実な圧縮ポリシーの精度に基づいて,まず性能予測器を訓練し,精度の高い性能予測器を許容コストで学習するための情報監督を行う。
次に,所望の圧縮ポリシを超高速に取得するために,バリア複雑性制約下での予測性能を最大化する勾配を利用して,適応的な更新をモーメントで段階的に進め,取得したプルーニングおよび量子化戦略の最適性を高める。
最新の自動モデル圧縮法と比較すると,画像分類とオブジェクト検出の実験結果から,検索コストを大幅に削減した競合精度・複雑度トレードオフを実現することが示された。
関連論文リスト
- Unified Framework for Neural Network Compression via Decomposition and Optimal Rank Selection [3.3454373538792552]
本稿では,決定された階数制約内での複合圧縮損失を利用して,分解と最適な階数選択を行う統一的な枠組みを提案する。
提案手法は連続空間におけるランクの自動探索を含み,トレーニングデータを用いることなく最適なランク設定を効率的に同定する。
様々なベンチマークデータセットを用いて,包括的解析により本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-09-05T14:15:54Z) - Towards Optimal Compression: Joint Pruning and Quantization [1.191194620421783]
本稿では,FITCompressについて紹介する。FITCompressは層単位での混合精度の量子化と非構造化プルーニングを組み合わせた新しい手法である。
コンピュータビジョンと自然言語処理ベンチマークの実験により,提案手法が優れた圧縮性能のトレードオフを実現することを示す。
論文 参考訳(メタデータ) (2023-02-15T12:02:30Z) - L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and
Accurate Deep Learning [24.712888488317816]
トレーニング中にモデルの層をまたいだ圧縮の度合いを動的に適用するためのフレームワークを提供する。
我々のフレームワークはL-GreCoと呼ばれ、モデル層に対する最適圧縮パラメータを自動的に選択する適応アルゴリズムに基づいている。
論文 参考訳(メタデータ) (2022-10-31T14:37:41Z) - Optimal Rate Adaption in Federated Learning with Compressed
Communications [28.16239232265479]
フェデレートラーニングは高い通信オーバーヘッドを引き起こし、モデル更新の圧縮によって大幅に軽減される。
ネットワーク環境における 圧縮とモデルの精度のトレードオフは 未だ不明です
各繰り返しの圧縮を戦略的に調整することで最終モデルの精度を最大化する枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-13T14:26:15Z) - Generalizable Mixed-Precision Quantization via Attribution Rank
Preservation [90.26603048354575]
効率的な推論のための一般化可能な混合精度量子化法(GMPQ)を提案する。
提案手法は,最先端の混合精度ネットワークと比較し,競合精度・複雑度トレードオフを求める。
論文 参考訳(メタデータ) (2021-08-05T16:41:57Z) - You Only Compress Once: Towards Effective and Elastic BERT Compression
via Exploit-Explore Stochastic Nature Gradient [88.58536093633167]
既存のモデル圧縮アプローチでは、さまざまなハードウェアデプロイメントに対応するために、さまざまな制約にまたがる再圧縮や微調整が必要となる。
圧縮を一度行い、至るところに展開するための新しいアプローチであるYOCO-BERTを提案する。
最先端のアルゴリズムと比較すると、YOCO-BERTはよりコンパクトなモデルを提供するが、GLUEベンチマークの平均精度は2.1%-4.5%向上している。
論文 参考訳(メタデータ) (2021-06-04T12:17:44Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) は閾値に基づくスペーシフィケーションスキームであり、DGCと同等のしきい値推定品質を享受する。
SIDCoは,非圧縮ベースライン,Topk,DGC圧縮機と比較して,最大で41:7%,7:6%,1:9%の速度でトレーニングを高速化する。
論文 参考訳(メタデータ) (2021-01-26T13:06:00Z) - Neural Network Compression Via Sparse Optimization [23.184290795230897]
スパース最適化の最近の進歩に基づくモデル圧縮フレームワークを提案する。
我々は、CIFAR10のVGG16とImageNetのResNet50で、同じレベルの精度で、最大7.2倍と2.9倍のFLOPを削減できる。
論文 参考訳(メタデータ) (2020-11-10T03:03:55Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z) - End-to-End Facial Deep Learning Feature Compression with Teacher-Student
Enhancement [57.18801093608717]
本稿では,ディープニューラルネットワークの表現と学習能力を活用することで,エンドツーエンドの特徴圧縮手法を提案する。
特に、抽出した特徴量を、レート歪みコストを最適化することにより、エンドツーエンドでコンパクトに符号化する。
提案モデルの有効性を顔の特徴で検証し, 圧縮性能を高いレート精度で評価した。
論文 参考訳(メタデータ) (2020-02-10T10:08:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。