PDFVQA: A New Dataset for Real-World VQA on PDF Documents
- URL: http://arxiv.org/abs/2304.06447v5
- Date: Tue, 6 Jun 2023 02:26:42 GMT
- Title: PDFVQA: A New Dataset for Real-World VQA on PDF Documents
- Authors: Yihao Ding, Siwen Luo, Hyunsuk Chung, Soyeon Caren Han
- Abstract summary: Document-based Visual Question Answering examines the document understanding of document images in conditions of natural language questions.
Our PDF-VQA dataset extends the current scale of document understanding that limits on the single document page to the new scale that asks questions over the full document of multiple pages.
- Score: 2.105395241374678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-based Visual Question Answering examines the document understanding
of document images in conditions of natural language questions. We proposed a
new document-based VQA dataset, PDF-VQA, to comprehensively examine the
document understanding from various aspects, including document element
recognition, document layout structural understanding as well as contextual
understanding and key information extraction. Our PDF-VQA dataset extends the
current scale of document understanding that limits on the single document page
to the new scale that asks questions over the full document of multiple pages.
We also propose a new graph-based VQA model that explicitly integrates the
spatial and hierarchically structural relationships between different document
elements to boost the document structural understanding. The performances are
compared with several baselines over different question types and
tasks\footnote{The full dataset will be released after paper acceptance.
Related papers
- Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering [13.625303311724757]
Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD)
We propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval.
arXiv Detail & Related papers (2024-04-19T09:00:05Z) - Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
We propose to identify the typical structure of document within a collection.
We abstract over arbitrary header paraphrases, and ground each topic to respective document locations.
We develop an unsupervised graph-based method which leverages both inter- and intra-document similarities.
arXiv Detail & Related papers (2024-02-21T16:22:21Z) - PDFTriage: Question Answering over Long, Structured Documents [60.96667912964659]
Representing structured documents as plain text is incongruous with the user's mental model of these documents with rich structure.
We propose PDFTriage that enables models to retrieve the context based on either structure or content.
Our benchmark dataset consists of 900+ human-generated questions over 80 structured documents.
arXiv Detail & Related papers (2023-09-16T04:29:05Z) - Workshop on Document Intelligence Understanding [3.2929609168290543]
This workshop aims to bring together researchers and industry developers in the field of document intelligence.
We also released a data challenge on the recently introduced document-level VQA dataset, PDFVQA.
arXiv Detail & Related papers (2023-07-31T02:14:25Z) - DocumentNet: Bridging the Data Gap in Document Pre-Training [78.01647768018485]
We propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models.
The collected dataset, named DocumentNet, does not depend on specific document types or entity sets.
Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training.
arXiv Detail & Related papers (2023-06-15T08:21:15Z) - DLUE: Benchmarking Document Language Understanding [32.550855843975484]
There is no well-established consensus on how to comprehensively evaluate document understanding abilities.
This paper summarizes four representative abilities, i.e., document classification, document structural analysis, document information extraction, and document transcription.
Under the new evaluation framework, we propose textbfDocument Language Understanding Evaluation -- textbfDLUE, a new task suite.
arXiv Detail & Related papers (2023-05-16T15:16:24Z) - DocBank: A Benchmark Dataset for Document Layout Analysis [114.81155155508083]
We present textbfDocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis.
Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents.
arXiv Detail & Related papers (2020-06-01T16:04:30Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
It is challenging to create a large-scale information extraction dataset at the document level.
We introduce SciREX, a document level IE dataset that encompasses multiple IE tasks.
We develop a neural model as a strong baseline that extends previous state-of-the-art IE models to document-level IE.
arXiv Detail & Related papers (2020-05-01T17:30:10Z) - Kleister: A novel task for Information Extraction involving Long
Documents with Complex Layout [5.8530995077744645]
We introduce a new task (named Kleister) with two new datasets.
An NLP system must find the most important information, about various types of entities, in long formal documents.
We propose Pipeline method as a text-only baseline with different Named Entity Recognition architectures.
arXiv Detail & Related papers (2020-03-04T22:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.