PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering
- URL: http://arxiv.org/abs/2404.12720v1
- Date: Fri, 19 Apr 2024 09:00:05 GMT
- Title: PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering
- Authors: Yihao Ding, Kaixuan Ren, Jiabin Huang, Siwen Luo, Soyeon Caren Han,
- Abstract summary: Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD)
We propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval.
- Score: 13.625303311724757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD), particularly those dominated by lengthy textual content like research journal articles. Existing studies primarily focus on real-world documents with sparse text, while challenges persist in comprehending the hierarchical semantic relations among multiple pages to locate multimodal components. To address this gap, we propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval. Unlike traditional machine reading comprehension (MRC) tasks, our approach aims to retrieve entire paragraphs containing answers or visually rich document entities like tables and figures. Our contributions include the introduction of a comprehensive PDF Document VQA dataset, allowing the examination of semantically hierarchical layout structures in text-dominant documents. We also present new VRD-QA frameworks designed to grasp textual contents and relations among document layouts simultaneously, extending page-level understanding to the entire multi-page document. Through this work, we aim to enhance the capabilities of existing vision-and-language models in handling challenges posed by text-dominant documents in VRD-QA.
Related papers
- M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding [63.33447665725129]
We introduce M3DocRAG, a novel multi-modal RAG framework that flexibly accommodates various document contexts.
M3DocRAG can efficiently handle single or many documents while preserving visual information.
We also present M3DocVQA, a new benchmark for evaluating open-domain DocVQA over 3,000+ PDF documents with 40,000+ pages.
arXiv Detail & Related papers (2024-11-07T18:29:38Z) - Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction [23.47150047875133]
Document parsing is essential for converting unstructured and semi-structured documents into machine-readable data.
Document parsing plays an indispensable role in both knowledge base construction and training data generation.
This paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts.
arXiv Detail & Related papers (2024-10-28T16:11:35Z) - Unified Multi-Modal Interleaved Document Representation for Information Retrieval [57.65409208879344]
We produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities.
Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
We propose to identify the typical structure of document within a collection.
We abstract over arbitrary header paraphrases, and ground each topic to respective document locations.
We develop an unsupervised graph-based method which leverages both inter- and intra-document similarities.
arXiv Detail & Related papers (2024-02-21T16:22:21Z) - FATURA: A Multi-Layout Invoice Image Dataset for Document Analysis and
Understanding [8.855033708082832]
We introduce FATURA, a pivotal resource for researchers in the field of document analysis and understanding.
FATURA is a highly diverse dataset featuring multi- annotated invoice document images.
We provide comprehensive benchmarks for various document analysis and understanding tasks and conduct experiments under diverse training and evaluation scenarios.
arXiv Detail & Related papers (2023-11-20T15:51:14Z) - On Task-personalized Multimodal Few-shot Learning for Visually-rich
Document Entity Retrieval [59.25292920967197]
Few-shot document entity retrieval (VDER) is an important topic in industrial NLP applications.
FewVEX is a new dataset to boost future research in the field of entity-level few-shot VDER.
We present a task-aware meta-learning based framework, with a central focus on achieving effective task personalization.
arXiv Detail & Related papers (2023-11-01T17:51:43Z) - PDFTriage: Question Answering over Long, Structured Documents [60.96667912964659]
Representing structured documents as plain text is incongruous with the user's mental model of these documents with rich structure.
We propose PDFTriage that enables models to retrieve the context based on either structure or content.
Our benchmark dataset consists of 900+ human-generated questions over 80 structured documents.
arXiv Detail & Related papers (2023-09-16T04:29:05Z) - PDFVQA: A New Dataset for Real-World VQA on PDF Documents [2.105395241374678]
Document-based Visual Question Answering examines the document understanding of document images in conditions of natural language questions.
Our PDF-VQA dataset extends the current scale of document understanding that limits on the single document page to the new scale that asks questions over the full document of multiple pages.
arXiv Detail & Related papers (2023-04-13T12:28:14Z) - Towards Complex Document Understanding By Discrete Reasoning [77.91722463958743]
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language.
We introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages and 16,558 question-answer pairs.
We develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions.
arXiv Detail & Related papers (2022-07-25T01:43:19Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
We introduce Document Topic Modelling and Document Shuffle Prediction as novel pre-training tasks.
We utilize the Longformer network architecture as the backbone to encode the multi-modal information from multi-page documents in an end-to-end fashion.
arXiv Detail & Related papers (2020-09-30T05:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.