Joint optimization of a $\beta$-VAE for ECG task-specific feature
extraction
- URL: http://arxiv.org/abs/2304.06476v2
- Date: Thu, 15 Jun 2023 09:24:01 GMT
- Title: Joint optimization of a $\beta$-VAE for ECG task-specific feature
extraction
- Authors: Viktor van der Valk, Douwe Atsma, Roderick Scherptong, and Marius
Staring
- Abstract summary: We study the use of $beta$-variational autoencoders (VAEs) as an explainable feature extractor.
We improve on its predictive capacities by jointly optimizing signal reconstruction and cardiac function prediction.
- Score: 1.3124513975412255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiography is the most common method to investigate the condition of
the heart through the observation of cardiac rhythm and electrical activity,
for both diagnosis and monitoring purposes. Analysis of electrocardiograms
(ECGs) is commonly performed through the investigation of specific patterns,
which are visually recognizable by trained physicians and are known to reflect
cardiac (dis)function. In this work we study the use of $\beta$-variational
autoencoders (VAEs) as an explainable feature extractor, and improve on its
predictive capacities by jointly optimizing signal reconstruction and cardiac
function prediction. The extracted features are then used for cardiac function
prediction using logistic regression. The method is trained and tested on data
from 7255 patients, who were treated for acute coronary syndrome at the Leiden
University Medical Center between 2010 and 2021. The results show that our
method significantly improved prediction and explainability compared to a
vanilla $\beta$-VAE, while still yielding similar reconstruction performance.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Prospects for AI-Enhanced ECG as a Unified Screening Tool for Cardiac and Non-Cardiac Conditions -- An Explorative Study in Emergency Care [0.9503773054285559]
We investigate the capability of a single model to predict a diverse range of both cardiac and non-cardiac discharge diagnoses based on a sole ECG collected in the emergency department.
We find that 253, 81 cardiac, and 172 non-cardiac, ICD codes can be reliably predicted in the sense of exceeding an AUROC score of 0.8 in a statistically significant manner.
arXiv Detail & Related papers (2023-12-18T09:29:42Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
In clinical practice, the assignment of captured ECG recordings to incorrect patients can occur inadvertently.
We propose a small and efficient neural-network based model for determining whether two ECGs originate from the same patient.
Our model achieves state-of-the-art performance in gallery-probe patient identification on PTB-XL while utilizing 760x fewer parameters.
arXiv Detail & Related papers (2023-06-09T18:53:25Z) - AI-enabled Assessment of Cardiac Systolic and Diastolic Function from
Echocardiography [1.0082848901582044]
Left ventricular (LV) function is an important factor in terms of patient management, outcome, and long-term survival of patients with heart disease.
Recently published clinical guidelines for heart failure recognise that over reliance on only one measure of cardiac function is suboptimal.
Recent advances in AI-based echocardiography analysis have shown excellent results on automated estimation of LV volumes and LV ejection fraction.
arXiv Detail & Related papers (2022-03-21T10:59:48Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.