Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation
- URL: http://arxiv.org/abs/2410.18094v1
- Date: Tue, 08 Oct 2024 10:03:52 GMT
- Title: Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation
- Authors: Xiangqian Zhu, Mengnan Shi, Xuexin Yu, Chang Liu, Xiaocong Lian, Jintao Fei, Jiangying Luo, Xin Jin, Ping Zhang, Xiangyang Ji,
- Abstract summary: We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
- Score: 41.82319894067087
- License:
- Abstract: Atrial fibrillation is a commonly encountered clinical arrhythmia associated with stroke and increased mortality. Since professional medical knowledge is required for annotation, exploiting a large corpus of ECGs to develop accurate supervised learning-based atrial fibrillation algorithms remains challenging. Self-supervised learning (SSL) is a promising recipe for generalized ECG representation learning, eliminating the dependence on expensive labeling. However, without well-designed incorporations of knowledge related to atrial fibrillation, existing SSL approaches typically suffer from unsatisfactory capture of robust ECG representations. In this paper, we propose an inter-intra period-aware ECG representation learning approach. Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations, aiming to learn the single-period stable morphology representation while retaining crucial interperiod features. After further fine-tuning, our approach demonstrates remarkable AUC performances on the BTCH dataset, \textit{i.e.}, 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection. On commonly used benchmarks of CinC2017 and CPSC2021, the generalization capability and effectiveness of our methodology are substantiated with competitive results.
Related papers
- CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.
Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - EB-GAME: A Game-Changer in ECG Heartbeat Anomaly Detection [7.574088346030774]
This paper focuses on detecting abnormal signals in electrocardi-ograms (ECGs) using only labels from normal signals as training data.
In-spired by self-supervised vision transformers, which learn by dividing images into patches, and masked auto-encoders, we introduce the ECG Heartbeat Anomaly Detection model, EB-GAME.
arXiv Detail & Related papers (2024-04-08T13:01:59Z) - CoReEcho: Continuous Representation Learning for 2D+time Echocardiography Analysis [42.810247034149214]
We propose CoReEcho, a novel training framework emphasizing continuous representations tailored for direct EF regression.
CoReEcho: 1) outperforms the current state-of-the-art (SOTA) on the largest echocardiography dataset (EchoNet-Dynamic) with MAE of 3.90 & R2 of 82.44, and 2) provides robust and generalizable features that transfer more effectively in related downstream tasks.
arXiv Detail & Related papers (2024-03-15T10:18:06Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.