論文の概要: Adversarial Examples from Dimensional Invariance
- arxiv url: http://arxiv.org/abs/2304.06575v1
- Date: Thu, 13 Apr 2023 14:37:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 14:07:05.325296
- Title: Adversarial Examples from Dimensional Invariance
- Title(参考訳): 次元不変量からの逆例
- Authors: Benjamin L. Badger
- Abstract要約: 様々な深層学習モデルや浅層学習モデルの逆例が発見されている。
理論的,実証的な結果から,敵対例がほぼ不連続であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial examples have been found for various deep as well as shallow
learning models, and have at various times been suggested to be either fixable
model-specific bugs, or else inherent dataset feature, or both. We present
theoretical and empirical results to show that adversarial examples are
approximate discontinuities resulting from models that specify approximately
bijective maps $f: \Bbb R^n \to \Bbb R^m; n \neq m$ over their inputs, and this
discontinuity follows from the topological invariance of dimension.
- Abstract(参考訳): さまざまな深層モデルや浅層学習モデルに対して,さまざまな例が発見されており,修正可能なモデル固有のバグや,他の固有のデータセット機能,あるいはその両方が提案されている。
理論的および実証的な結果から、対角的な例は、およそ単射写像 $f: \Bbb R^n \to \Bbb R^m; n \neq m$ を入力とするモデルから得られる近似的不連続性であることを示す。
関連論文リスト
- Diffeomorphic Measure Matching with Kernels for Generative Modeling [1.2058600649065618]
本稿では、常微分方程式(ODE)と再生成ケルネルヒルベルト空間(RKHS)を用いて、最小分散生成モデリングおよびサンプリングに向けた確率測度を伝達するための枠組みを提案する。
提案手法の理論的解析を行い,モデルの複雑さ,トレーニングセット内のサンプル数,モデルの誤識別という観点から,事前誤差境界を与える。
論文 参考訳(メタデータ) (2024-02-12T21:44:20Z) - Learning Sparsity of Representations with Discrete Latent Variables [15.05207849434673]
本稿では,スパース深部潜伏生成モデルSDLGMを提案する。
表現の空間性は固定されていないが、事前に定義された制限の下で観察そのものに適合する。
推論と学習のために,MC勾配推定器をベースとした補正変分法を開発した。
論文 参考訳(メタデータ) (2023-04-03T12:47:18Z) - PAC Generalization via Invariant Representations [41.02828564338047]
有限標本集合における$epsilon$-approximate不変性の概念を考える。
PAC学習にインスパイアされ、有限サンプルのアウト・オブ・ディストリビューション一般化保証を得る。
この結果から, 介入部位が非次境界ノードの一定サイズの部分集合内にある場合に, 周囲次元でスケールしない境界を示す。
論文 参考訳(メタデータ) (2022-05-30T15:50:14Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Diverse Counterfactual Explanations for Anomaly Detection in Time Series [26.88575131193757]
本稿では,時系列異常検出モデルに対する反実的アンサンブル説明を生成するモデル非依存アルゴリズムを提案する。
本手法は, 検出モデルでは異常とはみなされない, 元の時系列の複数バージョンを, 多様な逆実例として生成する。
我々のアルゴリズムは、任意の識別可能な異常検出モデルに適用できる。
論文 参考訳(メタデータ) (2022-03-21T16:30:34Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。