論文の概要: How Will It Drape Like? Capturing Fabric Mechanics from Depth Images
- arxiv url: http://arxiv.org/abs/2304.06704v1
- Date: Thu, 13 Apr 2023 17:54:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 13:30:21.603550
- Title: How Will It Drape Like? Capturing Fabric Mechanics from Depth Images
- Title(参考訳): ドレイプはどんなものか?
深度画像からの織物力学のキャプチャ
- Authors: Carlos Rodriguez-Pardo, Melania Prieto-Martin, Dan Casas, Elena Garces
- Abstract要約: 深度カメラを用いたカジュアルキャプチャー装置を用いて織物の機械的パラメータを推定する手法を提案する。
本手法により,現実世界の繊維材料を機械的に正確に表現できる。
- 参考スコア(独自算出の注目度): 7.859729554664895
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a method to estimate the mechanical parameters of fabrics using a
casual capture setup with a depth camera. Our approach enables to create
mechanically-correct digital representations of real-world textile materials,
which is a fundamental step for many interactive design and engineering
applications. As opposed to existing capture methods, which typically require
expensive setups, video sequences, or manual intervention, our solution can
capture at scale, is agnostic to the optical appearance of the textile, and
facilitates fabric arrangement by non-expert operators. To this end, we propose
a sim-to-real strategy to train a learning-based framework that can take as
input one or multiple images and outputs a full set of mechanical parameters.
Thanks to carefully designed data augmentation and transfer learning protocols,
our solution generalizes to real images despite being trained only on synthetic
data, hence successfully closing the sim-to-real loop.Key in our work is to
demonstrate that evaluating the regression accuracy based on the similarity at
parameter space leads to an inaccurate distances that do not match the human
perception. To overcome this, we propose a novel metric for fabric drape
similarity that operates on the image domain instead on the parameter space,
allowing us to evaluate our estimation within the context of a similarity rank.
We show that out metric correlates with human judgments about the perception of
drape similarity, and that our model predictions produce perceptually accurate
results compared to the ground truth parameters.
- Abstract(参考訳): 深度カメラを用いたカジュアルキャプチャー装置を用いて織物の力学的パラメータを推定する手法を提案する。
本手法は,多くのインタラクティブな設計・工学的応用のための基本ステップである,実世界の繊維材料を機械的に正確なデジタル表現することを可能にする。
通常、高価なセットアップ、ビデオシーケンス、手動による介入を必要とする既存のキャプチャー手法とは対照的に、我々のソリューションは大規模にキャプチャーが可能であり、繊維の光学的外観に依存しない。
そこで本研究では,1つまたは複数の画像を入力し,機械的パラメータの完全なセットを出力する学習ベースのフレームワークを学習するためのsim-to-real戦略を提案する。
本研究の目的は,パラメータ空間における類似性に基づく回帰精度の評価が,人間の知覚と一致しない不正確な距離につながることを示すことである。
そこで本研究では,パラメータ空間に代えて画像領域で動作するファブリックドレープ類似度に関する新しい指標を提案し,類似度ランクの文脈内で推定値を評価する。
提案手法は, ドレープ類似性の知覚に関する人間の判断と相関し, モデル予測が基底真理パラメータと比較して知覚的に正確な結果をもたらすことを示す。
関連論文リスト
- Single-image camera calibration with model-free distortion correction [0.0]
本稿では,センサ全体をカバーする平面スペックルパターンの単一画像から,キャリブレーションパラメータの完全な集合を推定する方法を提案する。
デジタル画像相関を用いて校正対象の画像点と物理点との対応を求める。
プロシージャの最後には、画像全体にわたって、密度が高く均一なモデルフリーな歪みマップが得られる。
論文 参考訳(メタデータ) (2024-03-02T16:51:35Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
コンピュータビジョンにおけるニューラルイメージベースのレンダリング問題に対する改善された解決策を提案する。
提案手法は,テスト時に新たな視点からシーンのリアルなイメージを合成することができる。
論文 参考訳(メタデータ) (2023-11-08T08:18:23Z) - CarPatch: A Synthetic Benchmark for Radiance Field Evaluation on Vehicle
Components [77.33782775860028]
車両の新たな総合ベンチマークであるCarPatchを紹介する。
内在カメラパラメータと外在カメラパラメータを付加した画像のセットに加えて、各ビューに対して対応する深度マップとセマンティックセグメンテーションマスクが生成されている。
グローバルとパートベースのメトリクスは、いくつかの最先端技術を評価し、比較し、より良い特徴付けるために定義され、使われてきた。
論文 参考訳(メタデータ) (2023-07-24T11:59:07Z) - Neural inverse procedural modeling of knitting yarns from images [6.114281140793954]
本研究では,個々の特性に着目したネットワークのアンサンブルにおいて,糸構造の複雑さをよりよく見いだせることを示す。
そこで本研究では,パラメトリック・プロシージャ糸モデルと各ネットワークアンサンブルを組み合わせることで,ロバストなパラメータ推定が可能であることを実証した。
論文 参考訳(メタデータ) (2023-03-01T00:56:39Z) - Leveraging Deepfakes to Close the Domain Gap between Real and Synthetic
Images in Facial Capture Pipelines [8.366597450893456]
我々は、パーソナライズされたアプリ内ビデオデータから3次元顔モデルを構築し、追跡するためのエンドツーエンドパイプラインを提案する。
本稿では,従来のコンピュータグラフィックスパイプラインにおける衝突アルゴリズムに典型的な階層的クラスタリングフレームワークに基づく自動データキュレーションと検索手法を提案する。
我々は、前述の技術を活用して、現実の地上真実データの必要性を回避するために、モーションキャプチャ回帰器のトレーニング方法を概説する。
論文 参考訳(メタデータ) (2022-04-22T15:09:49Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Camera Calibration through Camera Projection Loss [4.36572039512405]
画像対を用いた固有(焦点長と主点オフセット)パラメータの予測手法を提案する。
従来の手法とは違って,マルチタスク学習フレームワークにおいて,カメラモデル方程式をニューラルネットワークとして組み込んだ新しい表現を提案する。
提案手法は,10パラメータ中7パラメータに対して,ディープラーニングと従来手法の両方に対して,優れた性能を実現する。
論文 参考訳(メタデータ) (2021-10-07T14:03:10Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data
Generation [88.04759848307687]
Meta-Sim2では,パラメータに加えてシーン構造を学習することを目指している。
強化学習(Reinforcement Learning)を使用してモデルをトレーニングし、トレーニング成功の鍵となる合成画像とターゲット画像の間に特徴空間のばらつきを設計する。
また,この手法は,他のベースラインシミュレーション手法と対照的に,生成したデータセット上でトレーニングしたオブジェクト検出器の性能を下流で向上させることを示す。
論文 参考訳(メタデータ) (2020-08-20T17:28:45Z) - Stillleben: Realistic Scene Synthesis for Deep Learning in Robotics [33.30312206728974]
本稿では,シーン認識タスクの学習データを生成するための合成パイプラインについて述べる。
本手法は,物理シミュレーションを用いて,物体メッシュを物理的に現実的で密集したシーンに配置する。
私たちのパイプラインは、ディープニューラルネットワークのトレーニング中にオンラインで実行できます。
論文 参考訳(メタデータ) (2020-05-12T10:11:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。