A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning
- URL: http://arxiv.org/abs/2304.06738v1
- Date: Thu, 13 Apr 2023 16:34:12 GMT
- Title: A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning
- Authors: Fahad Sarfraz, Elahe Arani, Bahram Zonooz
- Abstract summary: Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting.
We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle.
We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event.
- Score: 13.041607703862724
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Humans excel at continually acquiring, consolidating, and retaining
information from an ever-changing environment, whereas artificial neural
networks (ANNs) exhibit catastrophic forgetting. There are considerable
differences in the complexity of synapses, the processing of information, and
the learning mechanisms in biological neural networks and their artificial
counterparts, which may explain the mismatch in performance. We consider a
biologically plausible framework that constitutes separate populations of
exclusively excitatory and inhibitory neurons that adhere to Dale's principle,
and the excitatory pyramidal neurons are augmented with dendritic-like
structures for context-dependent processing of stimuli. We then conduct a
comprehensive study on the role and interactions of different mechanisms
inspired by the brain, including sparse non-overlapping representations,
Hebbian learning, synaptic consolidation, and replay of past activations that
accompanied the learning event. Our study suggests that the employing of
multiple complementary mechanisms in a biologically plausible architecture,
similar to the brain, may be effective in enabling continual learning in ANNs.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Synergistic pathways of modulation enable robust task packing within neural dynamics [0.0]
We use recurrent network models to probe the distinctions between two forms of contextual modulation of neural dynamics.
We demonstrate distinction between these mechanisms at the level of the neuronal dynamics they induce.
These characterizations indicate complementarity and synergy in how these mechanisms act, potentially over multiple time-scales.
arXiv Detail & Related papers (2024-08-02T15:12:01Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
We review current brain-inspired learning representations in artificial neural networks.
We investigate the integration of more biologically plausible mechanisms, such as synaptic plasticity, to enhance these networks' capabilities.
arXiv Detail & Related papers (2023-05-18T18:34:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Learning by Active Forgetting for Neural Networks [36.47528616276579]
Remembering and forgetting mechanisms are two sides of the same coin in a human learning-memory system.
Modern machine learning systems have been working to endow machine with lifelong learning capability through better remembering.
This paper presents a learning model by active forgetting mechanism with artificial neural networks.
arXiv Detail & Related papers (2021-11-21T14:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.