Brain-inspired learning in artificial neural networks: a review
- URL: http://arxiv.org/abs/2305.11252v1
- Date: Thu, 18 May 2023 18:34:29 GMT
- Title: Brain-inspired learning in artificial neural networks: a review
- Authors: Samuel Schmidgall, Jascha Achterberg, Thomas Miconi, Louis Kirsch,
Rojin Ziaei, S. Pardis Hajiseyedrazi, Jason Eshraghian
- Abstract summary: We review current brain-inspired learning representations in artificial neural networks.
We investigate the integration of more biologically plausible mechanisms, such as synaptic plasticity, to enhance these networks' capabilities.
- Score: 5.064447369892274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks (ANNs) have emerged as an essential tool in
machine learning, achieving remarkable success across diverse domains,
including image and speech generation, game playing, and robotics. However,
there exist fundamental differences between ANNs' operating mechanisms and
those of the biological brain, particularly concerning learning processes. This
paper presents a comprehensive review of current brain-inspired learning
representations in artificial neural networks. We investigate the integration
of more biologically plausible mechanisms, such as synaptic plasticity, to
enhance these networks' capabilities. Moreover, we delve into the potential
advantages and challenges accompanying this approach. Ultimately, we pinpoint
promising avenues for future research in this rapidly advancing field, which
could bring us closer to understanding the essence of intelligence.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Towards Self-Assembling Artificial Neural Networks through Neural
Developmental Programs [10.524752369156339]
Biological nervous systems are created in a fundamentally different way than current artificial neural networks.
By contrast, biological nervous systems are grown through a dynamic self-organizing process.
arXiv Detail & Related papers (2023-07-17T01:58:52Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting.
We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle.
We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event.
arXiv Detail & Related papers (2023-04-13T16:34:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence [4.697611383288171]
A kind of spiking neural network with biological interpretability is gradually receiving wide attention.
This review hopes to attract different researchers and advance the development of brain-inspired intelligence and artificial intelligence.
arXiv Detail & Related papers (2022-04-09T09:34:34Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
Deep learning continues to play as a powerful state-of-art technique that has achieved extraordinary accuracy levels in various domains of regression and classification tasks.
The original goal of proposing the neural network model is to improve the understanding of complex human brains using a mathematical expression approach.
Recent deep learning techniques continue to lose the interpretations of its functional process by being treated mostly as a black-box approximator.
arXiv Detail & Related papers (2022-03-24T21:40:04Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.