論文の概要: nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales
- arxiv url: http://arxiv.org/abs/2304.06875v4
- Date: Sat, 6 Apr 2024 05:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 05:36:49.795426
- Title: nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales
- Title(参考訳): NanoLM: スケールを越えた正確な損失予測による、拡張可能なLLM事前トレーニングベンチマーク
- Authors: Yiqun Yao, Siqi fan, Xiusheng Huang, Xuezhi Fang, Xiang Li, Ziyi Ni, Xin Jiang, Xuying Meng, Peng Han, Shuo Shang, Kang Liu, Aixin Sun, Yequan Wang,
- Abstract要約: 我々は,最大更新パラメトリゼーション(muP)がスケーリング法則の正確な適合を可能にするという観測に基づいて,事前学習損失を予測する手法を提案する。
トレーニング前コストの約14%で、52Bまでのモデルの損失を正確に予測できる。
NanoLMのゴールは、限られた資源を持つ研究者が大きなモデルで有意義な結論に達することを可能にすることです。
- 参考スコア(独自算出の注目度): 65.01417261415833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As language models scale up, it becomes increasingly expensive to verify research ideas because conclusions on small models do not trivially transfer to large ones. A possible solution is to establish a generic system that accurately predicts certain metrics for large models without training them. Existing scaling laws require hyperparameter search on the largest models, limiting their predicative capability. In this paper, we present an approach (namely {\mu}Scaling) to predict the pre-training loss, based on our observations that Maximal Update Parametrization ({\mu}P) enables accurate fitting of scaling laws close to common loss basins in hyperparameter space. With {\mu}Scaling, different model designs can be compared on large scales by training only their smaller counterparts. Further, we introduce nanoLM: an affordable LLM pre-training benchmark that facilitates this new research paradigm. With around 14% of the one-time pre-training cost, we can accurately forecast the loss for models up to 52B. Our goal with nanoLM is to empower researchers with limited resources to reach meaningful conclusions on large models. We also aspire for our benchmark to serve as a bridge between the academic community and the industry. Code for {\mu}Scaling is available at https://github.com/cofe-ai/Mu-scaling. Code for nanoLLM will be available later.
- Abstract(参考訳): 言語モデルが拡大するにつれて、小さなモデルの結論が簡単に大きなモデルに変換されないため、研究のアイデアを検証するのにますますコストがかかる。
可能な解決策は、大規模なモデルのメトリクスをトレーニングせずに正確に予測する汎用システムを確立することである。
既存のスケーリング法則は、最大モデルのハイパーパラメーター探索を必要とし、予測能力を制限する。
本稿では、最大更新パラメトリゼーション({\mu}P)により、ハイパーパラメータ空間の共通損失流域に近接するスケーリング法則を正確に適合させることができるという観測に基づいて、事前学習損失を予測するためのアプローチ(すなわち {\mu}Scaling)を提案する。
{\mu} Scalingでは、より小さなモデルのみをトレーニングすることで、さまざまなモデル設計を大規模に比較することができる。
さらに,この新たな研究パラダイムを促進する,安価なLCM事前学習ベンチマークであるnanoLMを紹介する。
トレーニング前コストの約14%で、52Bまでのモデルの損失を正確に予測できる。
NanoLMのゴールは、限られた資源を持つ研究者が大きなモデルで有意義な結論に達することを可能にすることです。
私たちはまた、私たちのベンチマークが学術コミュニティと業界の間の橋渡しになることを期待しています。
Code for {\mu} Scalingはhttps://github.com/cofe-ai/Mu-scaling.comで公開されている。
NanoLLMのコードは後日公開される予定だ。
関連論文リスト
- Predicting Emergent Capabilities by Finetuning [98.9684114851891]
微調整された言語モデルでは,出現頻度の低いモデルに展開するスケーリングのポイントをシフトできることがわかった。
提案手法は4つの標準NLPベンチマークを用いて検証する。
いくつかのケースでは、最大4倍の計算でトレーニングされたモデルが出現したかどうかを正確に予測できる。
論文 参考訳(メタデータ) (2024-11-25T01:48:09Z) - Warmstarting for Scaling Language Models [47.691182347349894]
モデルのサイズを拡大してパフォーマンスをスケールすることは、現在の大規模言語モデルパラダイムにとって非常にうまく機能しています。
現代の規模のデータとモデルに対する高いトレーニングコストは、そのようなトレーニング設定のチューニング方法と到着方法の理解の欠如をもたらす。
大型モデルの事前訓練のコストを改善する1つの方法は、より安価にチューニングできる小型モデルから大規模なトレーニングをウォームスタートさせることである。
論文 参考訳(メタデータ) (2024-11-11T20:02:29Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
スケーリング法則は、より少ないパラメータやより少ないトレーニングセットで訓練が容易なモデルから外挿することで、ターゲットとなる機械学習モデルの損失を予測する。
我々は1000以上のスケーリング法則を推定し、新しいモデルファミリーにおけるスケーリング法則を推定するためのベストプラクティスを導出する。
論文 参考訳(メタデータ) (2024-10-15T17:59:10Z) - Scaling Smart: Accelerating Large Language Model Pre-training with Small Model Initialization [22.90653167145603]
本稿では,事前学習した言語モデルのパラメータを,隠れ次元が増大する大規模モデルのパラメータに拡張する手法であるHyperCloningを紹介する。
結果として、より大きなモデルは、トレーニングを開始する前に、より小さなモデルの予測能力と精度をすでに継承している。
論文 参考訳(メタデータ) (2024-09-19T16:50:26Z) - Language models scale reliably with over-training and on downstream tasks [121.69867718185125]
スケーリング法則は、高価なトレーニング実行を引き出すための有用なガイドである。
しかし、現在の研究と言語モデルがどのように訓練されているかには差がある。
対照的に、スケーリング法則は主に推論における損失を予測するが、モデルは通常下流のタスクのパフォーマンスで比較される。
論文 参考訳(メタデータ) (2024-03-13T13:54:00Z) - Selecting Large Language Model to Fine-tune via Rectified Scaling Law [74.84096546112215]
制約のあるリソースを前提に、すべてのモデルを微調整し、その後の選択は非現実的である。
微調整スケーリング曲線は、よく知られた「パワーフェーズ」だけでなく、これまで観測されていなかった「プリパワーフェーズ」も含む。
本法則を利用して,資源消費の数百倍少ない最適モデルを選択する新しいLCM選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-04T01:55:00Z) - "Medium" LMs of Code in the Era of LLMs: Lessons From StackOverflow [5.036273913335737]
SOBertBase、109Mパラメータを持つSOBertBaseと、762Mパラメータを持つSOBertLargeの2つのモデルを、それぞれ$187$と$800$の予算でトレーニングします。
その結果、ドメイン内データを広範囲かつ適切に事前学習することで、クローズドソース汎用モデルを活用するための、強力で安価な代替手段が得られることが示された。
論文 参考訳(メタデータ) (2023-06-05T21:38:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。