YOLO-Drone:Airborne real-time detection of dense small objects from
high-altitude perspective
- URL: http://arxiv.org/abs/2304.06925v2
- Date: Wed, 11 Oct 2023 02:52:46 GMT
- Title: YOLO-Drone:Airborne real-time detection of dense small objects from
high-altitude perspective
- Authors: Li Zhu, Jiahui Xiong, Feng Xiong, Hanzheng Hu, Zhengnan Jiang
- Abstract summary: A real-time object detection algorithm (YOLO-Drone) is proposed and applied to two new UAV platforms and a specific light source.
YOLO-Drone exhibits high real-time inference speed of 53 FPS and a maximum mAP of 34.04%.
Notably, YOLO-Drone achieves high performance under the silicon-based golden LEDs, with a mAP of up to 87.71%.
- Score: 8.864582442699023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned Aerial Vehicles (UAVs), specifically drones equipped with remote
sensing object detection technology, have rapidly gained a broad spectrum of
applications and emerged as one of the primary research focuses in the field of
computer vision. Although UAV remote sensing systems have the ability to detect
various objects, small-scale objects can be challenging to detect reliably due
to factors such as object size, image degradation, and real-time limitations.
To tackle these issues, a real-time object detection algorithm (YOLO-Drone) is
proposed and applied to two new UAV platforms as well as a specific light
source (silicon-based golden LED). YOLO-Drone presents several novelties: 1)
including a new backbone Darknet59; 2) a new complex feature aggregation module
MSPP-FPN that incorporated one spatial pyramid pooling and three atrous spatial
pyramid pooling modules; 3) and the use of Generalized Intersection over Union
(GIoU) as the loss function. To evaluate performance, two benchmark datasets,
UAVDT and VisDrone, along with one homemade dataset acquired at night under
silicon-based golden LEDs, are utilized. The experimental results show that, in
both UAVDT and VisDrone, the proposed YOLO-Drone outperforms state-of-the-art
(SOTA) object detection methods by improving the mAP of 10.13% and 8.59%,
respectively. With regards to UAVDT, the YOLO-Drone exhibits both high
real-time inference speed of 53 FPS and a maximum mAP of 34.04%. Notably,
YOLO-Drone achieves high performance under the silicon-based golden LEDs, with
a mAP of up to 87.71%, surpassing the performance of YOLO series under ordinary
light sources. To conclude, the proposed YOLO-Drone is a highly effective
solution for object detection in UAV applications, particularly for night
detection tasks where silicon-based golden light LED technology exhibits
significant superiority.
Related papers
- YOLO-Vehicle-Pro: A Cloud-Edge Collaborative Framework for Object Detection in Autonomous Driving under Adverse Weather Conditions [8.820126303110545]
This paper proposes two innovative deep learning models: YOLO-Vehicle and YOLO-Vehicle-Pro.
YOLO-Vehicle is an object detection model tailored specifically for autonomous driving scenarios.
YOLO-Vehicle-Pro builds upon this foundation by introducing an improved image dehazing algorithm.
arXiv Detail & Related papers (2024-10-23T10:07:13Z) - YOLO-FEDER FusionNet: A Novel Deep Learning Architecture for Drone Detection [4.281091463408282]
We introduce a novel deep learning architecture called YOLO-FEDER FusionNet.
Unlike conventional approaches, YOLO-FEDER FusionNet combines generic object detection methods with the specialized strength of camouflage object detection techniques to enhance drone detection capabilities.
arXiv Detail & Related papers (2024-06-17T15:25:31Z) - MODIPHY: Multimodal Obscured Detection for IoT using PHantom Convolution-Enabled Faster YOLO [10.183459286746196]
We introduce YOLO Phantom, one of the smallest YOLO models ever conceived.
YOLO Phantom achieves comparable accuracy to the latest YOLOv8n model while simultaneously reducing both parameters and model size.
Its real-world efficacy is demonstrated on an IoT platform with advanced low-light and RGB cameras, seamlessly connecting to an AWS-based notification endpoint.
arXiv Detail & Related papers (2024-02-12T18:56:53Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - YOLOv3 with Spatial Pyramid Pooling for Object Detection with Unmanned
Aerial Vehicles [0.0]
We aim to improve the performance of the one-stage detector YOLOv3 by adding a Spatial Pyramid Pooling layer on the end of the backbone darknet-53.
We also conducted an evaluation study on different versions of YOLOv3 methods.
arXiv Detail & Related papers (2023-05-21T04:41:52Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDAR is a fully convolutional one-stage 3D object detector for LiDAR point clouds of autonomous driving scenes.
We show that an RV-based 3D detector with standard 2D convolutions alone can achieve comparable performance to state-of-the-art BEV-based detectors.
arXiv Detail & Related papers (2022-05-27T05:42:16Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Expandable YOLO: 3D Object Detection from RGB-D Images [64.14512458954344]
This paper aims at constructing a light-weight object detector that inputs a depth and a color image from a stereo camera.
By extending the network architecture of YOLOv3 to 3D in the middle, it is possible to output in the depth direction.
Intersection over Uninon (IoU) in 3D space is introduced to confirm the accuracy of region extraction results.
arXiv Detail & Related papers (2020-06-26T07:32:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.