MASF-YOLO: An Improved YOLOv11 Network for Small Object Detection on Drone View
- URL: http://arxiv.org/abs/2504.18136v1
- Date: Fri, 25 Apr 2025 07:43:33 GMT
- Title: MASF-YOLO: An Improved YOLOv11 Network for Small Object Detection on Drone View
- Authors: Liugang Lu, Dabin He, Congxiang Liu, Zhixiang Deng,
- Abstract summary: We propose a novel object detection network Multi-scale Context Aggregation and Scale-adaptive Fusion YOLO (MASF-YOLO)<n>To tackle the difficulty of detecting small objects in UAV images, we design a Multi-scale Feature Aggregation Module (MFAM), which significantly improves the detection accuracy of small objects.<n>Thirdly, we introduce a Dimension-Aware Selective Integration Module (DASI), which further enhances multi-scale feature fusion capabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of Unmanned Aerial Vehicle (UAV) and computer vision technologies, object detection from UAV perspectives has emerged as a prominent research area. However, challenges for detection brought by the extremely small proportion of target pixels, significant scale variations of objects, and complex background information in UAV images have greatly limited the practical applications of UAV. To address these challenges, we propose a novel object detection network Multi-scale Context Aggregation and Scale-adaptive Fusion YOLO (MASF-YOLO), which is developed based on YOLOv11. Firstly, to tackle the difficulty of detecting small objects in UAV images, we design a Multi-scale Feature Aggregation Module (MFAM), which significantly improves the detection accuracy of small objects through parallel multi-scale convolutions and feature fusion. Secondly, to mitigate the interference of background noise, we propose an Improved Efficient Multi-scale Attention Module (IEMA), which enhances the focus on target regions through feature grouping, parallel sub-networks, and cross-spatial learning. Thirdly, we introduce a Dimension-Aware Selective Integration Module (DASI), which further enhances multi-scale feature fusion capabilities by adaptively weighting and fusing low-dimensional features and high-dimensional features. Finally, we conducted extensive performance evaluations of our proposed method on the VisDrone2019 dataset. Compared to YOLOv11-s, MASFYOLO-s achieves improvements of 4.6% in mAP@0.5 and 3.5% in mAP@0.5:0.95 on the VisDrone2019 validation set. Remarkably, MASF-YOLO-s outperforms YOLOv11-m while requiring only approximately 60% of its parameters and 65% of its computational cost. Furthermore, comparative experiments with state-of-the-art detectors confirm that MASF-YOLO-s maintains a clear competitive advantage in both detection accuracy and model efficiency.
Related papers
- YOLO-RS: Remote Sensing Enhanced Crop Detection Methods [0.32985979395737786]
Existing target detection methods show poor performance when dealing with small targets in remote sensing images.<n>YOLO-RS is based on the latest Yolov11 which significantly enhances the detection of small targets.<n>Experiments validate the effectiveness and application potential of YOLO-RS in the task of detecting small targets in remote sensing images.
arXiv Detail & Related papers (2025-04-15T13:13:22Z) - Efficient Feature Fusion for UAV Object Detection [9.632727117779178]
Small objects, in particular, occupy small portions of images, making their accurate detection difficult.<n>Existing multi-scale feature fusion methods address these challenges by aggregating features across different resolutions.<n>We propose a novel feature fusion framework specifically designed for UAV object detection tasks.
arXiv Detail & Related papers (2025-01-29T20:39:16Z) - YOLO-MST: Multiscale deep learning method for infrared small target detection based on super-resolution and YOLO [0.18641315013048293]
This paper proposes a deep-learning infrared small target detection method that combines image super-resolution technology with multi-scale observation.<n>The mAP@0.5 detection rates of this method on two public datasets, SIRST and IRIS, reached 96.4% and 99.5% respectively.
arXiv Detail & Related papers (2024-12-27T18:43:56Z) - LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO [0.9062164411594178]
LAM-YOLO is an object detection model specifically designed for drone-based images.
We introduce a light-occlusion attention mechanism to enhance the visibility of small targets under different lighting conditions.
Second, we utilize an improved SIB-IoU as the regression loss function to accelerate model convergence and enhance localization accuracy.
arXiv Detail & Related papers (2024-11-01T10:00:48Z) - Real-Time Detection for Small UAVs: Combining YOLO and Multi-frame Motion Analysis [0.8971132850029493]
Unmanned Aerial Vehicle (UAV) detection technology plays a critical role in mitigating security risks and safeguarding privacy in both military and civilian applications.
Traditional detection methods face significant challenges in identifying UAV targets with extremely small pixels at long distances.
We propose the Global-Local YOLO-Motion (GL-YOMO) detection algorithm, which combines You Only Look Once (YOLO) object detection with multi-frame motion detection techniques.
arXiv Detail & Related papers (2024-10-10T14:30:50Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time Object Detection [63.36722419180875]
We provide an efficient and performant object detector, termed YOLO-MS.<n>We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.<n>Our work can also serve as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
We propose a novel and effective Multi-Level Fusion network, named as MLF-DET, for high-performance cross-modal 3D object DETection.
For the feature-level fusion, we present the Multi-scale Voxel Image fusion (MVI) module, which densely aligns multi-scale voxel features with image features.
For the decision-level fusion, we propose the lightweight Feature-cued Confidence Rectification (FCR) module, which exploits image semantics to rectify the confidence of detection candidates.
arXiv Detail & Related papers (2023-07-18T11:26:02Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - AdaZoom: Adaptive Zoom Network for Multi-Scale Object Detection in Large
Scenes [57.969186815591186]
Detection in large-scale scenes is a challenging problem due to small objects and extreme scale variation.
We propose a novel Adaptive Zoom (AdaZoom) network as a selective magnifier with flexible shape and focal length to adaptively zoom the focus regions for object detection.
arXiv Detail & Related papers (2021-06-19T03:30:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.