Combining Stochastic Explainers and Subgraph Neural Networks can
Increase Expressivity and Interpretability
- URL: http://arxiv.org/abs/2304.07152v1
- Date: Fri, 14 Apr 2023 14:21:20 GMT
- Title: Combining Stochastic Explainers and Subgraph Neural Networks can
Increase Expressivity and Interpretability
- Authors: Indro Spinelli, Michele Guerra, Filippo Maria Bianchi, Simone
Scardapane
- Abstract summary: Subgraph-enhanced graph neural networks (SGNN) can increase the power of the standard message-passing framework.
We introduce a novel framework that jointly predicts the class of the graph and a set of explanatory sparse subgraphs.
- Score: 12.526174412246107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subgraph-enhanced graph neural networks (SGNN) can increase the expressive
power of the standard message-passing framework. This model family represents
each graph as a collection of subgraphs, generally extracted by random sampling
or with hand-crafted heuristics. Our key observation is that by selecting
"meaningful" subgraphs, besides improving the expressivity of a GNN, it is also
possible to obtain interpretable results. For this purpose, we introduce a
novel framework that jointly predicts the class of the graph and a set of
explanatory sparse subgraphs, which can be analyzed to understand the decision
process of the classifier. We compare the performance of our framework against
standard subgraph extraction policies, like random node/edge deletion
strategies. The subgraphs produced by our framework allow to achieve comparable
performance in terms of accuracy, with the additional benefit of providing
explanations.
Related papers
- Deep Generative Models for Subgraph Prediction [10.56335881963895]
This paper introduces subgraph queries as a new task for deep graph learning.
Subgraph queries jointly predict the components of a target subgraph based on evidence that is represented by an observed subgraph.
We utilize a probabilistic deep Graph Generative Model to answer subgraph queries.
arXiv Detail & Related papers (2024-08-07T19:24:02Z) - A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening [18.688057947275112]
Subgraph Graph Neural Networks (Subgraph GNNs) enhance the expressivity of message-passing GNNs by representing graphs as sets of subgraphs.
Previous approaches suggested processing only subsets of subgraphs, selected either randomly or via learnable sampling.
This paper introduces a new Subgraph GNNs framework to address these issues.
arXiv Detail & Related papers (2024-06-13T16:29:06Z) - Improving the interpretability of GNN predictions through conformal-based graph sparsification [9.550589670316523]
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in solving graph classification tasks.
We propose a GNN emphtraining approach that finds the most predictive subgraph by removing edges and/or nodes.
We rely on reinforcement learning to solve the resulting bi-level optimization with a reward function based on conformal predictions.
arXiv Detail & Related papers (2024-04-18T17:34:47Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Ordered Subgraph Aggregation Networks [19.18478955240166]
Subgraph-enhanced graph neural networks (GNNs) have emerged, provably boosting the expressive power of standard (message-passing) GNNs.
Here, we introduce a theoretical framework and extend the known expressivity results of subgraph-enhanced GNNs.
We show that increasing subgraph size always increases the expressive power and develop a better understanding of their limitations.
arXiv Detail & Related papers (2022-06-22T15:19:34Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - On Explainability of Graph Neural Networks via Subgraph Explorations [48.56936527708657]
We propose a novel method, known as SubgraphX, to explain graph neural networks (GNNs)
Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly.
arXiv Detail & Related papers (2021-02-09T22:12:26Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.