EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks
- URL: http://arxiv.org/abs/2304.07200v1
- Date: Fri, 14 Apr 2023 15:23:28 GMT
- Title: EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks
- Authors: Ziyun Wang, Fernando Cladera Ojeda, Anthony Bisulco, Daewon Lee,
Camillo J. Taylor, Kostas Daniilidis, M. Ani Hsieh, Daniel D. Lee, and Volkan
Isler
- Abstract summary: We demonstrate an application where event cameras excel: accurately estimating the impact location of fast-moving objects.
We introduce a lightweight event representation called Binary Event History Image (BEHI) to encode event data at low latency.
We show that the system is capable of achieving a success rate of 81% in catching balls targeted at different locations, with a velocity of up to 13 m/s even on compute-constrained embedded platforms.
- Score: 107.62975594230687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event-based sensors have recently drawn increasing interest in robotic
perception due to their lower latency, higher dynamic range, and lower
bandwidth requirements compared to standard CMOS-based imagers. These
properties make them ideal tools for real-time perception tasks in highly
dynamic environments. In this work, we demonstrate an application where event
cameras excel: accurately estimating the impact location of fast-moving
objects. We introduce a lightweight event representation called Binary Event
History Image (BEHI) to encode event data at low latency, as well as a
learning-based approach that allows real-time inference of a confidence-enabled
control signal to the robot. To validate our approach, we present an
experimental catching system in which we catch fast-flying ping-pong balls. We
show that the system is capable of achieving a success rate of 81% in catching
balls targeted at different locations, with a velocity of up to 13 m/s even on
compute-constrained embedded platforms such as the Nvidia Jetson NX.
Related papers
- EvDNeRF: Reconstructing Event Data with Dynamic Neural Radiance Fields [80.94515892378053]
EvDNeRF is a pipeline for generating event data and training an event-based dynamic NeRF.
NeRFs offer geometric-based learnable rendering, but prior work with events has only considered reconstruction of static scenes.
We show that by training on varied batch sizes of events, we can improve test-time predictions of events at fine time resolutions.
arXiv Detail & Related papers (2023-10-03T21:08:41Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
Review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks.
Paper categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods.
arXiv Detail & Related papers (2023-04-19T16:21:14Z) - Fast Trajectory End-Point Prediction with Event Cameras for Reactive
Robot Control [4.110120522045467]
In this paper, we propose to exploit the low latency, motion-driven sampling, and data compression properties of event cameras to overcome these issues.
As a use-case, we use a Panda robotic arm to intercept a ball bouncing on a table.
We train the network in simulation to speed up the dataset acquisition and then fine-tune the models on real trajectories.
arXiv Detail & Related papers (2023-02-27T14:14:52Z) - PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras [4.110120522045467]
Event-cameras can guarantee fast visual sensing in dynamic environments, but require a tracking algorithm that can keep up with the high data rate induced by the robot ego-motion.
We introduce a novel tracking method that leverages the Exponential Reduced Ordinal Surface (EROS) data representation to decouple event-by-event processing and tracking.
We propose the task of tracking the air hockey puck sliding on a surface, with the future aim of controlling the iCub robot to reach the target precisely and on time.
arXiv Detail & Related papers (2022-05-16T13:23:52Z) - ESL: Event-based Structured Light [62.77144631509817]
Event cameras are bio-inspired sensors providing significant advantages over standard cameras.
We propose a novel structured-light system using an event camera to tackle the problem of accurate and high-speed depth sensing.
arXiv Detail & Related papers (2021-11-30T15:47:39Z) - Fast Motion Understanding with Spatiotemporal Neural Networks and
Dynamic Vision Sensors [99.94079901071163]
This paper presents a Dynamic Vision Sensor (DVS) based system for reasoning about high speed motion.
We consider the case of a robot at rest reacting to a small, fast approaching object at speeds higher than 15m/s.
We highlight the results of our system to a toy dart moving at 23.4m/s with a 24.73deg error in $theta$, 18.4mm average discretized radius prediction error, and 25.03% median time to collision prediction error.
arXiv Detail & Related papers (2020-11-18T17:55:07Z) - A Hybrid Neuromorphic Object Tracking and Classification Framework for
Real-time Systems [5.959466944163293]
This paper proposes a real-time, hybrid neuromorphic framework for object tracking and classification using event-based cameras.
Unlike traditional approaches of using event-by-event processing, this work uses a mixed frame and event approach to get energy savings with high performance.
arXiv Detail & Related papers (2020-07-21T07:11:27Z) - Streaming Object Detection for 3-D Point Clouds [29.465873948076766]
LiDAR provides a prominent sensory modality that informs many existing perceptual systems.
The latency for perceptual systems based on point cloud data can be dominated by the amount of time for a complete rotational scan.
We show how operating on LiDAR data in its native streaming formulation offers several advantages for self driving object detection.
arXiv Detail & Related papers (2020-05-04T21:55:15Z) - Event-based Robotic Grasping Detection with Neuromorphic Vision Sensor
and Event-Stream Dataset [8.030163836902299]
Neuromorphic vision is a small and young community of research. Compared to traditional frame-based computer vision, neuromorphic vision is a small and young community of research.
We construct a robotic grasping dataset named Event-Stream dataset with 91 objects.
As leds blink at high frequency, the Event-Stream dataset is annotated in a high frequency of 1 kHz.
We develop a deep neural network for grasping detection which consider the angle learning problem as classification instead of regression.
arXiv Detail & Related papers (2020-04-28T16:55:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.