論文の概要: Fusing Structure from Motion and Simulation-Augmented Pose Regression
from Optical Flow for Challenging Indoor Environments
- arxiv url: http://arxiv.org/abs/2304.07250v2
- Date: Mon, 24 Jul 2023 10:10:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-25 23:11:30.942821
- Title: Fusing Structure from Motion and Simulation-Augmented Pose Regression
from Optical Flow for Challenging Indoor Environments
- Title(参考訳): 室内環境に挑戦する光学フローからのポーズ回帰と運動からの融合構造
- Authors: Felix Ott, Lucas Heublein, David R\"ugamer, Bernd Bischl, Christopher
Mutschler
- Abstract要約: オブジェクトのローカライゼーションは、ロボット工学、バーチャルおよび拡張現実、倉庫における商品の輸送など、さまざまなアプリケーションにおいて重要なタスクである。
近年のディープラーニングの進歩により、単眼視覚カメラを用いた局所化が可能になった。
本研究の目的は,これらの課題に対して,追加情報を導入し,相対的ポーズ回帰(RPR)法を用いて絶対的なポーズを規則化することである。
- 参考スコア(独自算出の注目度): 3.071136270246468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The localization of objects is a crucial task in various applications such as
robotics, virtual and augmented reality, and the transportation of goods in
warehouses. Recent advances in deep learning have enabled the localization
using monocular visual cameras. While structure from motion (SfM) predicts the
absolute pose from a point cloud, absolute pose regression (APR) methods learn
a semantic understanding of the environment through neural networks. However,
both fields face challenges caused by the environment such as motion blur,
lighting changes, repetitive patterns, and feature-less structures. This study
aims to address these challenges by incorporating additional information and
regularizing the absolute pose using relative pose regression (RPR) methods.
RPR methods suffer under different challenges, i.e., motion blur. The optical
flow between consecutive images is computed using the Lucas-Kanade algorithm,
and the relative pose is predicted using an auxiliary small recurrent
convolutional network. The fusion of absolute and relative poses is a complex
task due to the mismatch between the global and local coordinate systems.
State-of-the-art methods fusing absolute and relative poses use pose graph
optimization (PGO) to regularize the absolute pose predictions using relative
poses. In this work, we propose recurrent fusion networks to optimally align
absolute and relative pose predictions to improve the absolute pose prediction.
We evaluate eight different recurrent units and construct a simulation
environment to pre-train the APR and RPR networks for better generalized
training. Additionally, we record a large database of different scenarios in a
challenging large-scale indoor environment that mimics a warehouse with
transportation robots. We conduct hyperparameter searches and experiments to
show the effectiveness of our recurrent fusion method compared to PGO.
- Abstract(参考訳): オブジェクトのローカライゼーションは、ロボット工学、バーチャルおよび拡張現実、倉庫における商品の輸送など、さまざまなアプリケーションにおいて重要なタスクである。
ディープラーニングの最近の進歩により、単眼視覚カメラを用いたローカライズが可能になった。
動きからの構造(SfM)が点雲から絶対的なポーズを予測する一方で、絶対的ポーズ回帰(APR)法はニューラルネットワークを通して環境の意味的理解を学ぶ。
しかし、どちらのフィールドも動きのぼやけ、照明の変化、繰り返しパターン、特徴のない構造といった環境によって引き起こされる課題に直面している。
本研究の目的は,これらの課題に対して,追加情報を導入し,相対的ポーズ回帰(RPR)法を用いて絶対的なポーズを規則化することである。
RPR法は異なる課題、すなわち動きのぼやけに悩まされる。
連続画像間の光学的流れはLucas-Kanadeアルゴリズムを用いて計算され、相対的なポーズは補助的な小さなリカレント畳み込みネットワークを用いて予測される。
絶対的なポーズと相対的なポーズの融合は、大域座標系と局所座標系のミスマッチによる複雑なタスクである。
絶対的なポーズと相対的なポーズを融合させる最先端の手法は、ポーズグラフ最適化(PGO)を用いて、相対的なポーズを用いて絶対的なポーズ予測を規則化する。
本研究では,絶対ポーズ予測と相対ポーズ予測を最適に調整し,絶対ポーズ予測を改善する再帰的融合ネットワークを提案する。
本研究では,APRおよびRPRネットワークを事前学習し,より汎用的なトレーニングを行うためのシミュレーション環境を構築する。
さらに,倉庫を輸送ロボットで模倣した大規模屋内環境において,様々なシナリオの大規模データベースを記録する。
PGOと比較して再帰融合法の有効性を示すために,超パラメータ探索と実験を行った。
関連論文リスト
- VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
カメラのポーズを推定することは3D再構成の基本的な課題であり、まばらにサンプリングされたビューを考えると依然として困難である。
本稿では,カメラを光束として扱うカメラポーズの分散表現を提案する。
提案手法は回帰法と拡散法の両方で,CO3Dのカメラポーズ推定における最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-22T18:59:56Z) - Learning to Localize in Unseen Scenes with Relative Pose Regressors [5.672132510411465]
相対的なポーズ回帰器(RPR)は、相対的な翻訳と回転をポーズラベル付き参照に推定することで、カメラをローカライズする。
しかし実際には、RPRのパフォーマンスは目に見えない場面で著しく劣化している。
我々は、結合、投影、注意操作(Transformer)によるアグリゲーションを実装し、結果として生じる潜在コードから相対的なポーズパラメータを回帰することを学ぶ。
現状のRCPと比較すると、室内および屋外のベンチマークにおいて、表示シーンにおける競合性能を維持しながら、見えない環境において、より優れたローカライズが期待できる。
論文 参考訳(メタデータ) (2023-03-05T17:12:50Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
近接場合成開口レーダ(SAR)は、ターゲットの散乱分布ホットスポットの高解像度画像を提供する。
一方、撮像の結果は、サイドローブ、クラッタ、ノイズから必然的に劣化する。
イメージを復元するために、現在の手法では、例えば、点拡散関数(PSF)は空間的に一貫したものであり、ターゲットはスパース点散乱器などで構成されている。
我々は、分解モデルを空間的に可変な複素畳み込みモデルに再構成し、近接場SARのシステム応答を考慮した。
モデルに基づくディープラーニングネットワークは、復元するために設計されている
論文 参考訳(メタデータ) (2022-11-28T01:28:33Z) - Benchmarking Visual-Inertial Deep Multimodal Fusion for Relative Pose
Regression and Odometry-aided Absolute Pose Regression [6.557612703872671]
視覚慣性ローカライゼーションは、仮想現実、自動運転車、航空機などのコンピュータビジョンやロボティクスアプリケーションにおいて重要な問題である。
本研究では,ポーズグラフの最適化とアテンションネットワークに基づく深層マルチモーダル融合の評価を行う。
本稿では,APR-RPRタスクの改善と,航空機やハンドヘルド機器のRPR-RPRタスクの改善について述べる。
論文 参考訳(メタデータ) (2022-08-01T15:05:26Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRMは、6Dポーズ改善のための新しいリカレントネットワークアーキテクチャである。
アーキテクチャにはLSTMユニットが組み込まれ、各改善ステップを通じて情報を伝達する。
DeepRMは、2つの広く受け入れられている課題データセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-28T16:18:08Z) - Poseur: Direct Human Pose Regression with Transformers [119.79232258661995]
単一画像からの2次元人間のポーズ推定に対する直接回帰に基づくアプローチを提案する。
私たちのフレームワークはエンドツーエンドの差別化が可能で、キーポイント間の依存関係を自然に活用することを学びます。
我々のアプローチは、最も優れたヒートマップベースのポーズ推定手法と比較して好意的に機能する最初の回帰ベースのアプローチである。
論文 参考訳(メタデータ) (2022-01-19T04:31:57Z) - TransCamP: Graph Transformer for 6-DoF Camera Pose Estimation [77.09542018140823]
本稿では、カメラ再配置問題に対処するため、グラフトランスフォーマーバックボーン、すなわちTransCamPを用いたニューラルネットワークアプローチを提案する。
TransCamPは、画像の特徴、カメラポーズ情報、フレーム間の相対的なカメラモーションを、エンコードされたグラフ属性に効果的に融合する。
論文 参考訳(メタデータ) (2021-05-28T19:08:43Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
本論文では,3次元変換ベクトルを学習し,提案空間内の任意のクエリ点をリザーブ空間内の対応する位置にマップする部分変換場を提案する。
パラメトリックモデルにネットワークのポーズを合わせることで、特に極端なポーズにおいて、より優れた登録品質が得られることを示す。
論文 参考訳(メタデータ) (2021-04-16T15:16:09Z) - Zero-Shot Reinforcement Learning with Deep Attention Convolutional
Neural Networks [12.282277258055542]
本研究では、特定の視覚センサ構成を持つ深層注意畳み込みニューラルネットワーク(DACNN)が、より低い計算複雑性で高いドメインとパラメータの変動を持つデータセット上でトレーニングを行うことを示す。
我々の新しいアーキテクチャは、制御対象に対する認識に適応し、知覚ネットワークを事前訓練することなくゼロショット学習を実現する。
論文 参考訳(メタデータ) (2020-01-02T19:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。