論文の概要: HEAT: A Highly Efficient and Affordable Training System for
Collaborative Filtering Based Recommendation on CPUs
- arxiv url: http://arxiv.org/abs/2304.07334v2
- Date: Wed, 3 May 2023 15:42:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 17:35:53.441899
- Title: HEAT: A Highly Efficient and Affordable Training System for
Collaborative Filtering Based Recommendation on CPUs
- Title(参考訳): heat:cpuに基づくコラボレーティブフィルタリングのための高効率で安価なトレーニングシステム
- Authors: Chengming Zhang, Shaden Smith, Baixi Sun, Jiannan Tian, Jonathan
Soifer, Xiaodong Yu, Shuaiwen Leon Song, Yuxiong He, Dingwen Tao
- Abstract要約: 協調フィルタリング(CF)は推奨のための最も効果的な手法の1つであることが証明されている。
マルチコアCPUにSimpleXを最適化する作業はなく、パフォーマンスが制限されている。
本稿では,現代CPUのマルチレベルキャッシュとマルチスレッド機能を完全に実現した効率的なCFトレーニングシステム(HEAT)を提案する。
- 参考スコア(独自算出の注目度): 11.007606356081435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering (CF) has been proven to be one of the most effective
techniques for recommendation. Among all CF approaches, SimpleX is the
state-of-the-art method that adopts a novel loss function and a proper number
of negative samples. However, there is no work that optimizes SimpleX on
multi-core CPUs, leading to limited performance. To this end, we perform an
in-depth profiling and analysis of existing SimpleX implementations and
identify their performance bottlenecks including (1) irregular memory accesses,
(2) unnecessary memory copies, and (3) redundant computations. To address these
issues, we propose an efficient CF training system (called HEAT) that fully
enables the multi-level caching and multi-threading capabilities of modern
CPUs. Specifically, the optimization of HEAT is threefold: (1) It tiles the
embedding matrix to increase data locality and reduce cache misses (thus
reduces read latency); (2) It optimizes stochastic gradient descent (SGD) with
sampling by parallelizing vector products instead of matrix-matrix
multiplications, in particular the similarity computation therein, to avoid
memory copies for matrix data preparation; and (3) It aggressively reuses
intermediate results from the forward phase in the backward phase to alleviate
redundant computation. Evaluation on five widely used datasets with both x86-
and ARM-architecture processors shows that HEAT achieves up to 45.2X speedup
over existing CPU solution and 4.5X speedup and 7.9X cost reduction in Cloud
over existing GPU solution with NVIDIA V100 GPU.
- Abstract(参考訳): 協調フィルタリング(CF)は推奨のための最も効果的な手法の1つであることが証明されている。
CFアプローチの中でもSimpleXは、新しい損失関数と適切な数の負のサンプルを採用する最先端の手法である。
しかし、マルチコアcpu上でsimplexを最適化する作業はなく、パフォーマンスが制限される。
そこで我々は,(1)不規則なメモリアクセス,(2)不必要なメモリコピー,(3)冗長な計算など,既存のSimpleX実装の詳細なプロファイリングと解析を行い,その性能ボトルネックを特定する。
これらの問題に対処するため,現代CPUのマルチレベルキャッシュとマルチスレッド機能を完全に実現した効率的なCFトレーニングシステム(HEAT)を提案する。
Specifically, the optimization of HEAT is threefold: (1) It tiles the embedding matrix to increase data locality and reduce cache misses (thus reduces read latency); (2) It optimizes stochastic gradient descent (SGD) with sampling by parallelizing vector products instead of matrix-matrix multiplications, in particular the similarity computation therein, to avoid memory copies for matrix data preparation; and (3) It aggressively reuses intermediate results from the forward phase in the backward phase to alleviate redundant computation.
x86とARMアーキテクチャプロセッサの両方で広く使用されている5つのデータセットの評価によると、HEATは既存のCPUソリューションよりも45.2倍のスピードアップ、4.5倍のスピードアップと7.9倍のコスト削減を実現している。
関連論文リスト
- Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
大規模言語モデル(LLM)は広く応用されているが、効率的な推論では課題に直面している。
本稿では、並列計算を容易にし、対称量子化をサポートする新しいバイポーラ-INTデータフォーマットを提案する。
ビットレベルで分解・復元する任意の精度行列乗算方式を実装し,フレキシブルな精度を実現する。
論文 参考訳(メタデータ) (2024-09-26T14:17:58Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
高速コア上での低コストかつ高効率な大規模生成モデル推論を実現するためのFlash-LLMを提案する。
SpMMカーネルレベルでは、Flash-LLMは最先端のライブラリであるSputnikとSparTAをそれぞれ平均2.9倍、1.5倍で上回っている。
論文 参考訳(メタデータ) (2023-09-19T03:20:02Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
計算グラフとして表される関数を考えると、従来のアーキテクチャはn階勾配を効率的に計算する上で困難に直面している。
InR-Archは,n階勾配の計算グラフをハードウェア最適化データフローアーキテクチャに変換するフレームワークである。
1.8-4.8x と 1.5-3.6x の高速化を CPU と GPU のベースラインと比較した結果を示す。
論文 参考訳(メタデータ) (2023-08-11T04:24:39Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Distributed Out-of-Memory NMF on CPU/GPU Architectures [1.0051474951635875]
本稿では,HPCシステムに対する非負行列分解(NMF)アルゴリズムのメモリ外実装を提案する。
ベンチマークの結果、CPUベースのNMFkよりもGPUを使用した新しい実装により、32Xから76倍のスピードアップが大幅に改善された。
論文 参考訳(メタデータ) (2022-02-19T03:49:21Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
我々は,従来のCPUアルゴリズムと比較して,一精度で最大72倍,半精度で最大452倍の高速化を実現していることを示す。
提案アルゴリズムは射出成形プロセスから得られた実世界のデータに適用し, 得られたサマリーが, コスト削減と不良部品製造の削減のために, この特定のプロセスのステアリングにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2021-05-25T15:55:14Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
幅広いパラメータをカバーする汎用的な1D畳み込み層の効率的な実装を紹介します。
特にIntel AVX-512とAVX-512 BFloat16命令を含むアーキテクチャ向けに最適化されている。
本稿では,最適化された1次元畳み込み層の性能を,実際のゲノミクスデータセットを用いたエンドツーエンドニューラルネットワークトレーニングで実証する。
論文 参考訳(メタデータ) (2021-04-16T09:54:30Z) - GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification [10.66048003460524]
ロジスティック回帰や線形サポートベクターマシン(SVM)分類などのL2正規化原始問題を解く最も効率的な方法の1つは、広く使われている信頼領域ニュートンアルゴリズムであるTRONである。
我々は、GPU最適化の法則を用いて、異なる損失と特徴表現に対するTRONトレーニング時間を劇的に短縮できることを示した。
論文 参考訳(メタデータ) (2020-08-08T03:40:27Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
ヘテロジニアスCPU+GPUアーキテクチャの深層学習のためのトレーニングアルゴリズムについて検討する。
私たちの2倍の目標 -- 収束率と資源利用を同時に最大化する -- は、この問題を難しくします。
これらのアルゴリズムの実装は,複数の実データセットよりも高速な収束と資源利用の両立を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-19T05:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。