Exact Subspace Diffusion for Decentralized Multitask Learning
- URL: http://arxiv.org/abs/2304.07358v1
- Date: Fri, 14 Apr 2023 19:42:19 GMT
- Title: Exact Subspace Diffusion for Decentralized Multitask Learning
- Authors: Shreya Wadehra, Roula Nassif, Stefan Vlaski
- Abstract summary: Distributed strategies for multitask learning induce relationships between agents in a more nuanced manner, and encourage collaboration without enforcing consensus.
We develop a generalization of the exact diffusion algorithm for subspace constrained multitask learning over networks, and derive an accurate expression for its mean-squared deviation.
We verify numerically the accuracy of the predicted performance expressions, as well as the improved performance of the proposed approach over alternatives based on approximate projections.
- Score: 17.592204922442832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical paradigms for distributed learning, such as federated or
decentralized gradient descent, employ consensus mechanisms to enforce
homogeneity among agents. While these strategies have proven effective in
i.i.d. scenarios, they can result in significant performance degradation when
agents follow heterogeneous objectives or data. Distributed strategies for
multitask learning, on the other hand, induce relationships between agents in a
more nuanced manner, and encourage collaboration without enforcing consensus.
We develop a generalization of the exact diffusion algorithm for subspace
constrained multitask learning over networks, and derive an accurate expression
for its mean-squared deviation when utilizing noisy gradient approximations. We
verify numerically the accuracy of the predicted performance expressions, as
well as the improved performance of the proposed approach over alternatives
based on approximate projections.
Related papers
- Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Multi-Agent Reinforcement Learning-Based UAV Pathfinding for Obstacle Avoidance in Stochastic Environment [12.122881147337505]
We propose a novel centralized training with decentralized execution method based on multi-agent reinforcement learning.
In our approach, agents communicate only with the centralized planner to make decentralized decisions online.
We conduct multi-step value convergence in multi-agent reinforcement learning to enhance the training efficiency.
arXiv Detail & Related papers (2023-10-25T14:21:22Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Diverse Projection Ensembles for Distributional Reinforcement Learning [6.754994171490016]
This work studies the combination of several different projections and representations in a distributional ensemble.
We derive an algorithm that uses ensemble disagreement, measured by the average $1$-Wasserstein distance, as a bonus for deep exploration.
arXiv Detail & Related papers (2023-06-12T13:59:48Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
We propose a framework for learning calibrated uncertainties under domain shifts.
In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution.
We show that our proposed method generates calibrated uncertainties that benefit downstream tasks.
arXiv Detail & Related papers (2020-10-08T02:10:54Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.