Collaborative Heterogeneous Causal Inference Beyond Meta-analysis
- URL: http://arxiv.org/abs/2404.15746v1
- Date: Wed, 24 Apr 2024 09:04:36 GMT
- Title: Collaborative Heterogeneous Causal Inference Beyond Meta-analysis
- Authors: Tianyu Guo, Sai Praneeth Karimireddy, Michael I. Jordan,
- Abstract summary: We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
- Score: 68.4474531911361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaboration between different data centers is often challenged by heterogeneity across sites. To account for the heterogeneity, the state-of-the-art method is to re-weight the covariate distributions in each site to match the distribution of the target population. Nevertheless, this method could easily fail when a certain site couldn't cover the entire population. Moreover, it still relies on the concept of traditional meta-analysis after adjusting for the distribution shift. In this work, we propose a collaborative inverse propensity score weighting estimator for causal inference with heterogeneous data. Instead of adjusting the distribution shift separately, we use weighted propensity score models to collaboratively adjust for the distribution shift. Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases. To account for the vulnerable density estimation, we further discuss the double machine method and show the possibility of using nonparametric density estimation with d<8 and a flexible machine learning method to guarantee asymptotic normality. We propose a federated learning algorithm to collaboratively train the outcome model while preserving privacy. Using synthetic and real datasets, we demonstrate the advantages of our method.
Related papers
- Improving Probabilistic Diffusion Models With Optimal Covariance Matching [27.2761325416843]
We introduce a novel method for learning the diagonal covariances.
We show how our method can substantially enhance the sampling efficiency, recall rate and likelihood of both diffusion models and latent diffusion models.
arXiv Detail & Related papers (2024-06-16T05:47:12Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
arXiv Detail & Related papers (2023-11-10T08:50:28Z) - Joint Probability Estimation Using Tensor Decomposition and Dictionaries [3.4720326275851994]
We study non-parametric estimation of joint probabilities of a given set of discrete and continuous random variables from their (empirically estimated) 2D marginals.
We create a dictionary of various families of distributions by inspecting the data, and use it to approximate each decomposed factor of the product in the mixture.
arXiv Detail & Related papers (2022-03-03T11:55:51Z) - Gaussian Graphical Models as an Ensemble Method for Distributed Gaussian
Processes [8.4159776055506]
We propose a novel approach for aggregating the Gaussian experts' predictions by Gaussian graphical model (GGM)
We first estimate the joint distribution of latent and observed variables using the Expectation-Maximization (EM) algorithm.
Our new method outperforms other state-of-the-art DGP approaches.
arXiv Detail & Related papers (2022-02-07T15:22:56Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
We propose DRE-infty, a divide-and-conquer approach to reduce Density ratio estimation (DRE) to a series of easier subproblems.
Inspired by Monte Carlo methods, we smoothly interpolate between the two distributions via an infinite continuum of intermediate bridge distributions.
We show that our approach performs well on downstream tasks such as mutual information estimation and energy-based modeling on complex, high-dimensional datasets.
arXiv Detail & Related papers (2021-11-22T06:26:29Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
We consider distributed variational inequalities (VIs) on domains with the problem data that is heterogeneous (non-IID) and distributed across many devices.
We make a very general assumption on the computational network that covers the settings of fully decentralized calculations.
We theoretically analyze its convergence rate in the strongly-monotone, monotone, and non-monotone settings.
arXiv Detail & Related papers (2021-06-15T17:45:51Z) - Robust Correction of Sampling Bias Using Cumulative Distribution
Functions [19.551668880584973]
Varying domains and biased datasets can lead to differences between the training and the target distributions.
Current approaches for alleviating this often rely on estimating the ratio of training and target probability density functions.
arXiv Detail & Related papers (2020-10-23T22:13:00Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
Estimating mutual information between continuous random variables is often intractable and challenging for high-dimensional data.
Recent progress has leveraged neural networks to optimize variational lower bounds on mutual information.
Our approach is based on training a classifier that provides the probability that a data sample pair is drawn from the joint distribution.
arXiv Detail & Related papers (2020-10-05T04:19:27Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.