Bayesian Inference on Brain-Computer Interfaces via GLASS
- URL: http://arxiv.org/abs/2304.07401v2
- Date: Thu, 15 Feb 2024 04:13:45 GMT
- Title: Bayesian Inference on Brain-Computer Interfaces via GLASS
- Authors: Bangyao Zhao, Jane E. Huggins, Jian Kang
- Abstract summary: Low signal-to-noise ratio (SNR) and complex spatial/temporal correlations of EEG signals present challenges in modeling and computation.
We introduce a novel Gaussian Latent channel model with Sparse time-varying effects (GLASS) under a fully Bayesian framework.
We demonstrate GLASS substantially improves BCI's performance in participants with amyotrophic lateral sclerosis (ALS)
For broader accessibility, we develop an efficient gradient-based variational inference (GBVI) algorithm for posterior computation.
- Score: 4.04514704204904
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Brain-computer interfaces (BCIs), particularly the P300 BCI, facilitate
direct communication between the brain and computers. The fundamental
statistical problem in P300 BCIs lies in classifying target and non-target
stimuli based on electroencephalogram (EEG) signals. However, the low
signal-to-noise ratio (SNR) and complex spatial/temporal correlations of EEG
signals present challenges in modeling and computation, especially for
individuals with severe physical disabilities-BCI's primary users. To address
these challenges, we introduce a novel Gaussian Latent channel model with
Sparse time-varying effects (GLASS) under a fully Bayesian framework. GLASS is
built upon a constrained multinomial logistic regression particularly designed
for the imbalanced target and non-target stimuli. The novel latent channel
decomposition efficiently alleviates strong spatial correlations between EEG
channels, while the soft-thresholded Gaussian process (STGP) prior ensures
sparse and smooth time-varying effects. We demonstrate GLASS substantially
improves BCI's performance in participants with amyotrophic lateral sclerosis
(ALS) and identifies important EEG channels (PO8, Oz, PO7, and Pz) in parietal
and occipital regions that align with existing literature. For broader
accessibility, we develop an efficient gradient-based variational inference
(GBVI) algorithm for posterior computation and provide a user-friendly Python
module available at https://github.com/BangyaoZhao/GLASS.
Related papers
- Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning [1.8946099300030472]
EEG-GraphAdapter (EGA) is a parameter-efficient fine-tuning (PEFT) approach to address these challenges.
EGA is integrated into pre-trained temporal backbone models as a GNN-based module.
It improves performance by up to 16.1% in the F1-score compared with the backbone BENDR model.
arXiv Detail & Related papers (2024-11-25T07:30:52Z) - SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBa is an architecture designed to scale up parameters in deep RL by injecting a simplicity bias.
By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved.
arXiv Detail & Related papers (2024-10-13T07:20:53Z) - Spatial Adaptation Layer: Interpretable Domain Adaptation For Biosignal Sensor Array Applications [0.7499722271664147]
Biosignal acquisition is key for healthcare applications and wearable devices.
Existing solutions often require large and expensive datasets and/or lack robustness and interpretability.
We propose the Spatial Adaptation Layer (SAL), which can be prepended to any biosignal array model.
We also introduce learnable baseline normalization (LBN) to reduce baseline fluctuations.
arXiv Detail & Related papers (2024-09-12T14:06:12Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - A Dynamic Domain Adaptation Deep Learning Network for EEG-based Motor
Imagery Classification [1.7465786776629872]
We propose a Dynamic Domain Adaptation Based Deep Learning Network (DADL-Net)
First, the EEG data is mapped to the three-dimensional geometric space and its temporal-spatial features are learned through the 3D convolution module.
The accuracy rates of 70.42% and 73.91% were achieved on the OpenBMI and BCIC IV 2a datasets.
arXiv Detail & Related papers (2023-09-21T01:34:00Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Fuzzy temporal convolutional neural networks in P300-based
Brain-computer interface for smart home interaction [3.726817037277484]
EEG patterns exhibit high variability across time and uncertainty due to noise.
It is a significant problem to be addressed in P300-based Brain Computer Interface for smart home interaction.
We propose a sequential unification of temporal convolutional networks (TCNs) modified to EEG signals, LSTM cells, with a fuzzy neural block (FNB)
arXiv Detail & Related papers (2022-04-09T00:35:35Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.