Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets
- URL: http://arxiv.org/abs/2403.15415v2
- Date: Thu, 27 Jun 2024 11:35:11 GMT
- Title: Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets
- Authors: Apolline Mellot, Antoine Collas, Sylvain Chevallier, Denis Engemann, Alexandre Gramfort,
- Abstract summary: We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
- Score: 53.367212596352324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining electroencephalogram (EEG) datasets for supervised machine learning (ML) is challenging due to session, subject, and device variability. ML algorithms typically require identical features at train and test time, complicating analysis due to varying sensor numbers and positions across datasets. Simple channel selection discards valuable data, leading to poorer performance, especially with datasets sharing few channels. To address this, we propose an unsupervised approach leveraging EEG signal physics. We map EEG channels to fixed positions using field interpolation, facilitating source-free domain adaptation. Leveraging Riemannian geometry classification pipelines and transfer learning steps, our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications. Comparative analysis against a statistical-based approach known as Dimensionality Transcending, a signal-based imputation called ComImp, source-dependent methods, as well as common channel selection and spherical spline interpolation, was conducted with leave-one-dataset-out validation on six public BCI datasets for a right-hand/left-hand classification task. Numerical experiments show that in the presence of few shared channels in train and test, the field interpolation consistently outperforms other methods, demonstrating enhanced classification performance across all datasets. When more channels are shared, field interpolation was found to be competitive with other methods and faster to compute than source-dependent methods.
Related papers
- Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - Single Domain Generalization via Normalised Cross-correlation Based
Convolutions [14.306250516592304]
Single Domain Generalization aims to train robust models using data from a single source.
We propose a novel operator called XCNorm that computes the normalized cross-correlation between weights and an input feature patch.
We show that deep neural networks composed of this operator are robust to common semantic distribution shifts.
arXiv Detail & Related papers (2023-07-12T04:15:36Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
Domain adaptation is a popular paradigm in modern machine learning.
We present a method called Domain Adaptation Principal Component Analysis (DAPCA)
DAPCA finds a linear reduced data representation useful for solving the domain adaptation task.
arXiv Detail & Related papers (2022-08-28T21:10:56Z) - Exploiting Multiple EEG Data Domains with Adversarial Learning [20.878816519635304]
We propose an adversarial inference approach to learn data-source invariant representations in this context.
We unify EEG recordings from different source domains (i.e., emotion recognition SEED, SEED-IV, DEAP, DREAMER)
arXiv Detail & Related papers (2022-04-16T11:09:20Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Learning from Heterogeneous EEG Signals with Differentiable Channel
Reordering [51.633889765162685]
CHARM is a method for training a single neural network across inconsistent input channels.
We perform experiments on four EEG classification datasets and demonstrate the efficacy of CHARM.
arXiv Detail & Related papers (2020-10-21T12:32:34Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.