Video Generation Beyond a Single Clip
- URL: http://arxiv.org/abs/2304.07483v1
- Date: Sat, 15 Apr 2023 06:17:30 GMT
- Title: Video Generation Beyond a Single Clip
- Authors: Hsin-Ping Huang, Yu-Chuan Su, Ming-Hsuan Yang
- Abstract summary: Video generation models can only generate video clips that are relatively short compared with the length of real videos.
To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process.
The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window.
- Score: 76.5306434379088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We tackle the long video generation problem, i.e.~generating videos beyond
the output length of video generation models. Due to the computation resource
constraints, video generation models can only generate video clips that are
relatively short compared with the length of real videos. Existing works apply
a sliding window approach to generate long videos at inference time, which is
often limited to generating recurrent events or homogeneous content. To
generate long videos covering diverse content and multiple events, we propose
to use additional guidance to control the video generation process. We further
present a two-stage approach to the problem, which allows us to utilize
existing video generation models to generate high-quality videos within a small
time window while modeling the video holistically based on the input guidance.
The proposed approach is complementary to existing efforts on video generation,
which focus on generating realistic video within a fixed time window. Extensive
experiments on challenging real-world videos validate the benefit of the
proposed method, which improves over state-of-the-art by up to 9.5% in
objective metrics and is preferred by users more than 80% of time.
Related papers
- FreeLong: Training-Free Long Video Generation with SpectralBlend Temporal Attention [57.651429116402554]
This paper investigates a straightforward and training-free approach to extend an existing short video diffusion model for consistent long video generation.
We find that directly applying the short video diffusion model to generate long videos can lead to severe video quality degradation.
Motivated by this, we propose a novel solution named FreeLong to balance the frequency distribution of long video features during the denoising process.
arXiv Detail & Related papers (2024-07-29T11:52:07Z) - Multi-sentence Video Grounding for Long Video Generation [46.363084926441466]
We propose a brave and new idea of Multi-sentence Video Grounding for Long Video Generation.
Our approach seamlessly extends the development in image/video editing, video morphing and personalized generation, and video grounding to the long video generation.
arXiv Detail & Related papers (2024-07-18T07:05:05Z) - ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning [36.378348127629195]
We propose a novel post-tuning methodology for video synthesis models, called ExVideo.
This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations.
Our approach augments the model's capacity to generate up to $5times$ its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos.
arXiv Detail & Related papers (2024-06-20T09:18:54Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
This paper presents a short-to-long video diffusion model, SEINE, that focuses on generative transition and prediction.
We propose a random-mask video diffusion model to automatically generate transitions based on textual descriptions.
Our model generates transition videos that ensure coherence and visual quality.
arXiv Detail & Related papers (2023-10-31T17:58:17Z) - Revisiting Kernel Temporal Segmentation as an Adaptive Tokenizer for
Long-form Video Understanding [57.917616284917756]
Real-world videos are often several minutes long with semantically consistent segments of variable length.
A common approach to process long videos is applying a short-form video model over uniformly sampled clips of fixed temporal length.
This approach neglects the underlying nature of long videos since fixed-length clips are often redundant or uninformative.
arXiv Detail & Related papers (2023-09-20T18:13:32Z) - Gen-L-Video: Multi-Text to Long Video Generation via Temporal
Co-Denoising [43.35391175319815]
This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos.
We introduce a novel paradigm dubbed Gen-L-Video, capable of extending off-the-shelf short video diffusion models.
Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models.
arXiv Detail & Related papers (2023-05-29T17:38:18Z) - Latent Video Diffusion Models for High-Fidelity Long Video Generation [58.346702410885236]
We introduce lightweight video diffusion models using a low-dimensional 3D latent space.
We also propose hierarchical diffusion in the latent space such that longer videos with more than one thousand frames can be produced.
Our framework generates more realistic and longer videos than previous strong baselines.
arXiv Detail & Related papers (2022-11-23T18:58:39Z) - Diverse Generation from a Single Video Made Possible [24.39972895902724]
We present a fast and practical method for video generation and manipulation from a single natural video.
Our method generates more realistic and higher quality results than single-video GANs.
arXiv Detail & Related papers (2021-09-17T15:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.