ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning
- URL: http://arxiv.org/abs/2406.14130v1
- Date: Thu, 20 Jun 2024 09:18:54 GMT
- Title: ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning
- Authors: Zhongjie Duan, Wenmeng Zhou, Cen Chen, Yaliang Li, Weining Qian,
- Abstract summary: We propose a novel post-tuning methodology for video synthesis models, called ExVideo.
This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations.
Our approach augments the model's capacity to generate up to $5times$ its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos.
- Score: 36.378348127629195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, advancements in video synthesis have attracted significant attention. Video synthesis models such as AnimateDiff and Stable Video Diffusion have demonstrated the practical applicability of diffusion models in creating dynamic visual content. The emergence of SORA has further spotlighted the potential of video generation technologies. Nonetheless, the extension of video lengths has been constrained by the limitations in computational resources. Most existing video synthesis models can only generate short video clips. In this paper, we propose a novel post-tuning methodology for video synthesis models, called ExVideo. This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations while incurring lower training expenditures. In particular, we design extension strategies across common temporal model architectures respectively, including 3D convolution, temporal attention, and positional embedding. To evaluate the efficacy of our proposed post-tuning approach, we conduct extension training on the Stable Video Diffusion model. Our approach augments the model's capacity to generate up to $5\times$ its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos. Importantly, the substantial increase in video length doesn't compromise the model's innate generalization capabilities, and the model showcases its advantages in generating videos of diverse styles and resolutions. We will release the source code and the enhanced model publicly.
Related papers
- ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
We propose a training-free video method for generative video models in a plug-and-play manner.
We transform a video model into a self-cascaded video diffusion model with the designed hidden state correction modules.
Our training-free method is even comparable to trained models supported by huge compute resources and large-scale datasets.
arXiv Detail & Related papers (2024-06-03T00:31:13Z) - Lumiere: A Space-Time Diffusion Model for Video Generation [75.54967294846686]
We introduce a Space-Time U-Net architecture that generates the entire temporal duration of the video at once.
This is in contrast to existing video models which synthesize distants followed by temporal super-resolution.
By deploying both spatial and (importantly) temporal down- and up-sampling, our model learns to directly generate a full-frame-rate, low-resolution video.
arXiv Detail & Related papers (2024-01-23T18:05:25Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - Video Generation Beyond a Single Clip [76.5306434379088]
Video generation models can only generate video clips that are relatively short compared with the length of real videos.
To generate long videos covering diverse content and multiple events, we propose to use additional guidance to control the video generation process.
The proposed approach is complementary to existing efforts on video generation, which focus on generating realistic video within a fixed time window.
arXiv Detail & Related papers (2023-04-15T06:17:30Z) - Video Probabilistic Diffusion Models in Projected Latent Space [75.4253202574722]
We propose a novel generative model for videos, coined projected latent video diffusion models (PVDM)
PVDM learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources.
arXiv Detail & Related papers (2023-02-15T14:22:34Z) - Latent Video Diffusion Models for High-Fidelity Long Video Generation [58.346702410885236]
We introduce lightweight video diffusion models using a low-dimensional 3D latent space.
We also propose hierarchical diffusion in the latent space such that longer videos with more than one thousand frames can be produced.
Our framework generates more realistic and longer videos than previous strong baselines.
arXiv Detail & Related papers (2022-11-23T18:58:39Z) - Imagen Video: High Definition Video Generation with Diffusion Models [64.06483414521222]
Imagen Video is a text-conditional video generation system based on a cascade of video diffusion models.
We find Imagen Video capable of generating videos of high fidelity, but also having a high degree of controllability and world knowledge.
arXiv Detail & Related papers (2022-10-05T14:41:38Z) - Video Diffusion Models [47.99413440461512]
Generating temporally coherent high fidelity video is an important milestone in generative modeling research.
We propose a diffusion model for video generation that shows very promising initial results.
We present the first results on a large text-conditioned video generation task, as well as state-of-the-art results on an established unconditional video generation benchmark.
arXiv Detail & Related papers (2022-04-07T14:08:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.