VISAR: A Human-AI Argumentative Writing Assistant with Visual
Programming and Rapid Draft Prototyping
- URL: http://arxiv.org/abs/2304.07810v2
- Date: Thu, 27 Jul 2023 20:24:42 GMT
- Title: VISAR: A Human-AI Argumentative Writing Assistant with Visual
Programming and Rapid Draft Prototyping
- Authors: Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, Toby Jia-Jun Li
- Abstract summary: VISAR is an AI-enabled writing assistant system designed to help writers brainstorm and revise hierarchical goals within their writing context.
It organizes argument structures through synchronized text editing and visual programming, and enhances persuasiveness with argumentation spark recommendations.
A controlled lab study confirmed the usability and effectiveness of VISAR in facilitating the argumentative writing planning process.
- Score: 13.023911633052482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In argumentative writing, writers must brainstorm hierarchical writing goals,
ensure the persuasiveness of their arguments, and revise and organize their
plans through drafting. Recent advances in large language models (LLMs) have
made interactive text generation through a chat interface (e.g., ChatGPT)
possible. However, this approach often neglects implicit writing context and
user intent, lacks support for user control and autonomy, and provides limited
assistance for sensemaking and revising writing plans. To address these
challenges, we introduce VISAR, an AI-enabled writing assistant system designed
to help writers brainstorm and revise hierarchical goals within their writing
context, organize argument structures through synchronized text editing and
visual programming, and enhance persuasiveness with argumentation spark
recommendations. VISAR allows users to explore, experiment with, and validate
their writing plans using automatic draft prototyping. A controlled lab study
confirmed the usability and effectiveness of VISAR in facilitating the
argumentative writing planning process.
Related papers
- Towards Full Authorship with AI: Supporting Revision with AI-Generated
Views [3.109675063162349]
Large language models (LLMs) are shaping a new user interface (UI) paradigm in writing tools by enabling users to generate text through prompts.
This paradigm shifts some creative control from the user to the system, thereby diminishing the user's authorship and autonomy in the writing process.
We introduce Textfocals, a prototype designed to investigate a human-centered approach that emphasizes the user's role in writing.
arXiv Detail & Related papers (2024-03-02T01:11:35Z) - GhostWriter: Augmenting Collaborative Human-AI Writing Experiences
Through Personalization and Agency [1.7707677585873678]
Large language models (LLMs) are becoming more prevalent and have found a ubiquitous use in providing different forms of writing assistance.
We introduce GhostWriter, an AI-enhanced writing design probe where users can exercise enhanced agency and personalization.
We study 18 participants who use GhostWriter on two different writing tasks, observing that it helps users craft personalized text generations and empowers them by providing multiple ways to control the system's writing style.
arXiv Detail & Related papers (2024-02-13T23:48:59Z) - Eliciting Human Preferences with Language Models [56.68637202313052]
Language models (LMs) can be directed to perform target tasks by using labeled examples or natural language prompts.
We propose to use *LMs themselves* to guide the task specification process.
We study GATE in three domains: email validation, content recommendation, and moral reasoning.
arXiv Detail & Related papers (2023-10-17T21:11:21Z) - Deliberate then Generate: Enhanced Prompting Framework for Text
Generation [70.10319005141888]
Deliberate then Generate (DTG) prompting framework consists of error detection instructions and candidates that may contain errors.
We conduct extensive experiments on 20+ datasets across 7 text generation tasks, including summarization, translation, dialogue, and more.
We show that DTG consistently outperforms existing prompting methods and achieves state-of-the-art performance on multiple text generation tasks.
arXiv Detail & Related papers (2023-05-31T13:23:04Z) - Uncovering the Potential of ChatGPT for Discourse Analysis in Dialogue:
An Empirical Study [51.079100495163736]
This paper systematically inspects ChatGPT's performance in two discourse analysis tasks: topic segmentation and discourse parsing.
ChatGPT demonstrates proficiency in identifying topic structures in general-domain conversations yet struggles considerably in specific-domain conversations.
Our deeper investigation indicates that ChatGPT can give more reasonable topic structures than human annotations but only linearly parses the hierarchical rhetorical structures.
arXiv Detail & Related papers (2023-05-15T07:14:41Z) - Approach Intelligent Writing Assistants Usability with Seven Stages of
Action [9.378355457555319]
We adopt Norman's seven stages of action as a framework to approach the interaction design of intelligent writing assistants.
We illustrate the framework's applicability to writing tasks by providing an example of software tutorial authoring.
arXiv Detail & Related papers (2023-04-06T02:11:55Z) - Sequentially Controlled Text Generation [97.22539956688443]
GPT-2 generates sentences that are remarkably human-like, longer documents can ramble and do not follow human-like writing structure.
We study the problem of imposing structure on long-range text.
We develop a sequential controlled text generation pipeline with generation and editing.
arXiv Detail & Related papers (2023-01-05T21:23:51Z) - PEER: A Collaborative Language Model [70.11876901409906]
We introduce PEER, a collaborative language model that imitates the entire writing process itself.
PEER can write drafts, add suggestions, propose edits and provide explanations for its actions.
We show that PEER achieves strong performance across various domains and editing tasks.
arXiv Detail & Related papers (2022-08-24T16:56:47Z) - Beyond Text Generation: Supporting Writers with Continuous Automatic
Text Summaries [27.853155569154705]
We propose a text editor to help users plan, structure and reflect on their writing process.
It provides continuously updated paragraph-wise summaries as margin annotations, using automatic text summarization.
arXiv Detail & Related papers (2022-08-19T13:09:56Z) - Persua: A Visual Interactive System to Enhance the Persuasiveness of
Arguments in Online Discussion [52.49981085431061]
Enhancing people's ability to write persuasive arguments could contribute to the effectiveness and civility in online communication.
We derived four design goals for a tool that helps users improve the persuasiveness of arguments in online discussions.
Persua is an interactive visual system that provides example-based guidance on persuasive strategies to enhance the persuasiveness of arguments.
arXiv Detail & Related papers (2022-04-16T08:07:53Z) - IGA : An Intent-Guided Authoring Assistant [37.98368621931934]
We leverage advances in language modeling to build an interactive writing assistant that generates and rephrases text according to author specifications.
Users provide input to our Intent-Guided Assistant (IGA) in the form of text interspersed with tags that correspond to specific rhetorical directives.
We fine-tune a language model on a datasetally-labeled with author intent, which allows IGA to fill in these tags with generated text that users can subsequently edit to their liking.
arXiv Detail & Related papers (2021-04-14T17:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.