Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process
- URL: http://arxiv.org/abs/2504.12488v1
- Date: Wed, 16 Apr 2025 21:05:46 GMT
- Title: Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process
- Authors: Mohi Reza, Jeb Thomas-Mitchell, Peter Dushniku, Nathan Laundry, Joseph Jay Williams, Anastasia Kuzminykh,
- Abstract summary: We identify four overarching design strategies for AI writing support.<n>Our findings reveal that writers' desired levels of AI intervention vary across the writing process.<n>Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI.
- Score: 17.275752224799497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As generative AI tools like ChatGPT become integral to everyday writing, critical questions arise about how to preserve writers' sense of agency and ownership when using these tools. Yet, a systematic understanding of how AI assistance affects different aspects of the writing process - and how this shapes writers' agency - remains underexplored. To address this gap, we conducted a systematic review of 109 HCI papers using the PRISMA approach. From this literature, we identify four overarching design strategies for AI writing support: structured guidance, guided exploration, active co-writing, and critical feedback - mapped across the four key cognitive processes in writing: planning, translating, reviewing, and monitoring. We complement this analysis with interviews of 15 writers across diverse domains. Our findings reveal that writers' desired levels of AI intervention vary across the writing process: content-focused writers (e.g., academics) prioritize ownership during planning, while form-focused writers (e.g., creatives) value control over translating and reviewing. Writers' preferences are also shaped by contextual goals, values, and notions of originality and authorship. By examining when ownership matters, what writers want to own, and how AI interactions shape agency, we surface both alignment and gaps between research and user needs. Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI, on human terms.
Related papers
- Beyond Profile: From Surface-Level Facts to Deep Persona Simulation in LLMs [50.0874045899661]
We introduce CharacterBot, a model designed to replicate both the linguistic patterns and distinctive thought processes of a character.<n>Using Lu Xun as a case study, we propose four training tasks derived from his 17 essay collections.<n>These include a pre-training task focused on mastering external linguistic structures and knowledge, as well as three fine-tuning tasks.<n>We evaluate CharacterBot on three tasks for linguistic accuracy and opinion comprehension, demonstrating that it significantly outperforms the baselines on our adapted metrics.
arXiv Detail & Related papers (2025-02-18T16:11:54Z) - "It was 80% me, 20% AI": Seeking Authenticity in Co-Writing with Large Language Models [97.22914355737676]
We examine whether and how writers want to preserve their authentic voice when co-writing with AI tools.
Our findings illuminate conceptions of authenticity in human-AI co-creation.
Readers' responses showed less concern about human-AI co-writing.
arXiv Detail & Related papers (2024-11-20T04:42:32Z) - How Does the Disclosure of AI Assistance Affect the Perceptions of Writing? [29.068596156140913]
We study whether and how the disclosure of the level and type of AI assistance in the writing process would affect people's perceptions of the writing.
Our results suggest that disclosing the AI assistance in the writing process, especially if AI has provided assistance in generating new content, decreases the average quality ratings.
arXiv Detail & Related papers (2024-10-06T16:45:33Z) - A Design Space for Intelligent and Interactive Writing Assistants [55.9780345526642]
We explore five aspects of writing assistants: task, user, technology, interaction, and ecosystem.
Within each aspect, we define dimensions (i.e., fundamental components of an aspect) and codes (i.e., potential options for each dimension) by systematically reviewing 115 papers.
Our design space aims to offer researchers and designers a practical tool to navigate, comprehend, and compare the various possibilities of writing assistants.
arXiv Detail & Related papers (2024-03-21T04:03:16Z) - Techniques for supercharging academic writing with generative AI [0.0]
This Perspective maps out principles and methods for using generative artificial intelligence (AI) to elevate the quality and efficiency of academic writing.
We introduce a human-AI collaborative framework that delineates the rationale (why), process (how), and nature (what) of AI engagement in writing.
arXiv Detail & Related papers (2023-10-26T04:35:00Z) - PaperCard for Reporting Machine Assistance in Academic Writing [48.33722012818687]
ChatGPT, a question-answering system released by OpenAI in November 2022, has demonstrated a range of capabilities that could be utilised in producing academic papers.
This raises critical questions surrounding the concept of authorship in academia.
We propose a framework we name "PaperCard", a documentation for human authors to transparently declare the use of AI in their writing process.
arXiv Detail & Related papers (2023-10-07T14:28:04Z) - The Future of AI-Assisted Writing [0.0]
We conduct a comparative user-study between such tools from an information retrieval lens: pull and push.
Our findings show that users welcome seamless assistance of AI in their writing.
Users also enjoyed the collaboration with AI-assisted writing tools and did not feel a lack of ownership.
arXiv Detail & Related papers (2023-06-29T02:46:45Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Beyond Text Generation: Supporting Writers with Continuous Automatic
Text Summaries [27.853155569154705]
We propose a text editor to help users plan, structure and reflect on their writing process.
It provides continuously updated paragraph-wise summaries as margin annotations, using automatic text summarization.
arXiv Detail & Related papers (2022-08-19T13:09:56Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
We present CoAuthor, a dataset designed for revealing GPT-3's capabilities in assisting creative and argumentative writing.
We demonstrate that CoAuthor can address questions about GPT-3's language, ideation, and collaboration capabilities.
We discuss how this work may facilitate a more principled discussion around LMs' promises and pitfalls in relation to interaction design.
arXiv Detail & Related papers (2022-01-18T07:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.