A Neural Network Transformer Model for Composite Microstructure Homogenization
- URL: http://arxiv.org/abs/2304.07877v2
- Date: Wed, 29 May 2024 02:20:25 GMT
- Title: A Neural Network Transformer Model for Composite Microstructure Homogenization
- Authors: Emil Pitz, Kishore Pochiraju,
- Abstract summary: Homogenization methods, such as the Mori-Tanaka method, offer rapid homogenization for a wide range of constituent properties.
This paper illustrates a transformer neural network architecture that captures the knowledge of various microstructures.
The network predicts the history-dependent, non-linear, and homogenized stress-strain response.
- Score: 1.2277343096128712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneity and uncertainty in a composite microstructure lead to either computational bottlenecks if modeled rigorously or to solution inaccuracies in the stress field and failure predictions if approximated. Although methods suitable for analyzing arbitrary and non-linear microstructures exist, their computational cost makes them impractical to use in large-scale structural analysis. Surrogate models or Reduced Order Models (ROMs) commonly enhance efficiencies but are typically calibrated with a single microstructure. Homogenization methods, such as the Mori-Tanaka method, offer rapid homogenization for a wide range of constituent properties. However, simplifying assumptions, like stress and strain averaging in phases, render the consideration of both deterministic and stochastic variations in microstructure infeasible. This paper illustrates a transformer neural network architecture that captures the knowledge of various microstructures and constituents, enabling it to function as a computationally efficient homogenization surrogate model. Given an image or an abstraction of an arbitrary composite microstructure of linearly elastic fibers in an elastoplastic matrix, the transformer network predicts the history-dependent, non-linear, and homogenized stress-strain response. Two methods for encoding microstructure features were tested: calculating two-point statistics using Principal Component Analysis (PCA) for dimensionality reduction and employing an autoencoder with a Convolutional Neural Network (CNN). Both methods accurately predict the homogenized material response. The developed transformer neural network offers an efficient means for microstructure-to-property translation, generalizable and extendable to a variety of microstructures. The paper describes the network architecture, training and testing data generation, and performance under cycling and random loadings.
Related papers
- Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
We present a framework for multiscale structures with spatially varying microstructural symmetry and differentiably different microstructural descriptors.
Our findings highlight the potential of integrating consistency with density-based design optimization.
arXiv Detail & Related papers (2024-08-25T14:17:43Z) - Denoising diffusion algorithm for inverse design of microstructures with
fine-tuned nonlinear material properties [0.0]
We introduce a denoising diffusion algorithm to discover microstructures with nonlinear fine-tuned properties.
A convolutional neural network surrogate is trained to replace high-fidelity finite element simulations to filter out prototypes outside the admissible range.
The algorithm is tested on the open-source mechanical MNIST data set.
arXiv Detail & Related papers (2023-02-24T20:31:48Z) - A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites [0.0]
In this work, a recurrent deep neural network model is trained to predict the path-dependent elasto-plastic stress response of short fiber reinforced composites.
The model gives very accurate predictions in a computationally efficient manner when compared with independent micromechanical simulations.
arXiv Detail & Related papers (2022-09-27T12:14:15Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
This work proposes a generative adversarial network tailored towards three-dimensional microstructure generation.
The lightweight algorithm is able to learn the underlying properties of the material from a single microCT-scan without the need of explicit descriptors.
arXiv Detail & Related papers (2022-05-31T13:26:51Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.